


Sample Chapters
Copyright © 2010 by Michael Halvorson

All rights reserved. 

To learn more about this book, go to: 
http://go.microsoft.com/fwlink/?LinkId=187514



		  vii

Table of Contents
Acknowledgments  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xv

Introduction .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xvii

Part I	 Getting Started with Microsoft Visual Basic 2010

	 1	 Exploring the Visual Studio Integrated Development 
Environment .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3

The Visual Studio Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             4

The Visual Studio Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                7

The Designer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   10

Running a Visual Basic Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   11

The Properties Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               13

Moving and Resizing the Programming Tools . . . . . . . . . . . . . . . . . . . . . . . . . . .                            17

Moving and Resizing Tool Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               18

Docking Tool Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          19

Hiding Tool Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            21

Switching Among Open Files and Tools  
by Using the IDE Navigator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            22

Opening a Web Browser Within Visual Studio . . . . . . . . . . . . . . . . . . . . . . . . . . .                            23

Getting Help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                        24

Managing Help Settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         25

Using F1 Help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  26

Customizing IDE Settings to Match  
Step-by-Step Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                29

Setting the IDE for Visual Basic Development . . . . . . . . . . . . . . . . . . . . . .                       29

Checking Project and Compiler Settings  . . . . . . . . . . . . . . . . . . . . . . . . . .                           31

One Step Further: Exiting Visual Studio  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 33

Chapter 1 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            34

Microsoft is interested in hearing your feedback so we can continually improve our books and learning  
resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!



viii	 Table of Contents

	 2	 Writing Your First Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Lucky Seven: Your First  
Visual Basic Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 37

Programming Steps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  38

Creating the User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            38

Setting the Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                45

The Picture Box Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            49

Writing the Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     52

A Look at the Button1_Click 
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                           56

Running Visual Basic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      58

Sample Projects on Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               59

Building an Executable File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            60

Deploying Your Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           62

One Step Further: Adding to a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 63

Chapter 2 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            64

	 3	 Working with Toolbox Controls . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 67
The Basic Use of Controls: The Hello  
World Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                      67

Using the DateTimePicker Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      73

The Birthday Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           73

Controls for Gathering Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           78

Using Group Boxes and Radio Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             81

Processing Input with List Boxes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  84

A Word About Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      89

One Step Further: Using the LinkLabel Control . . . . . . . . . . . . . . . . . . . . . . . . . .                           91

Chapter 3 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            95

	 4	 Working with Menus, Toolbars, and Dialog Boxes .  .  .  .  .  .  .  .  .  .  .  . 97
Adding Menus by Using the MenuStrip Control  . . . . . . . . . . . . . . . . . . . . . . . . .                          97

Adding Access Keys to Menu Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                99

Processing Menu Choices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            102

Adding Toolbars with the ToolStrip Control . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             107

Using Dialog Box Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            110

Event Procedures That Manage Common  
Dialog Boxes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                       112

One Step Further: Assigning Shortcut Keys to Menus  . . . . . . . . . . . . . . . . . . .                    117

Chapter 4 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           119



	 Table of Contents	 ix

Part II	 Programming Fundamentals
	 5	 Visual Basic Variables and Formulas, 

and the .NET Framework  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 123
The Anatomy of a Visual Basic Program Statement  . . . . . . . . . . . . . . . . . . . . .                      123

Using Variables to Store Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   124

Setting Aside Space for Variables: The Dim Statement  . . . . . . . . . . . . .              124

Implicit Variable Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     126

Using Variables in a Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         127

Using a Variable to Store Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        130

Using a Variable for Output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          133

Working with Specific Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     135

Constants: Variables That Don’t Change . . . . . . . . . . . . . . . . . . . . . . . . . .                           142

Working with Visual Basic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   143

Basic Math: The +, –, *, and / Operators . . . . . . . . . . . . . . . . . . . . . . . . . .                           144

Using Advanced Operators: \, Mod, ^, and & . . . . . . . . . . . . . . . . . . . . .                      147

Working with Math Methods in the .NET Framework  . . . . . . . . . . . . . . . . . . .                    152

One Step Further: Establishing Order of Precedence . . . . . . . . . . . . . . . . . . . .                     155

Using Parentheses in a Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  156

Chapter 5 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           156

	 6	 Using Decision Structures . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 159
Event-Driven Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           159

Using Conditional Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        161

If . . . Then Decision Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         161

Testing Several Conditions in an If . . . Then 
Decision Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              162

Using Logical Operators in Conditional Expressions  . . . . . . . . . . . . . . .                167

Short-Circuiting by Using AndAlso and OrElse  . . . . . . . . . . . . . . . . . . . .                     169

Select Case Decision Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Using Comparison Operators with a Select  
Case Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 173

One Step Further: Detecting Mouse Events . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             177

Chapter 6 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           179

	 7	 Using Loops and Timers .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 181
Writing For . . . Next Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            181

Using a Counter Variable in a Multiline TextBox Control . . . . . . . . . . . . . . . . .                  183

Creating Complex For . . . Next Loops  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  185

Using a Counter That Has Greater Scope . . . . . . . . . . . . . . . . . . . . . . . . .                          189



x	 Table of Contents

Writing Do Loops  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   192

Avoiding an Endless Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            193

The Timer Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   196

Creating a Digital Clock by Using a Timer Control  . . . . . . . . . . . . . . . . . . . . . .                       197

Using a Timer Object to Set a Time Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               200

One Step Further: Inserting Code Snippets  . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             203

Chapter 7 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           207

	 8	 Debugging Visual Basic Programs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 209
Finding and Correcting Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         209

Three Types of Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                210

Identifying Logic Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              211

Debugging 101: Using Debugging Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               212

Tracking Variables by Using a Watch Window . . . . . . . . . . . . . . . . . . . . . . . . . .                           217

Visualizers: Debugging Tools That Display Data . . . . . . . . . . . . . . . . . . . . . . . .                         220

Using the Immediate and Command Windows . . . . . . . . . . . . . . . . . . . . . . . . .                          221

Switching to the Command Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   223

One Step Further: Removing Breakpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              224

Chapter 8 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           225

	 9	 Trapping Errors by Using Structured Error Handling .  .  .  .  .  .  .  .  . 227
Processing Errors by Using the Try . . . Catch Statement . . . . . . . . . . . . . . . . . .                   227

When to Use Error Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     228

Setting the Trap: The Try . . . Catch Code Block  . . . . . . . . . . . . . . . . . . . .                     229

Path and Disc Drive Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       229

Writing a Disc Drive Error Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     233

Using the Finally Clause to Perform Cleanup Tasks . . . . . . . . . . . . . . . . . . . . . . 234

More Complex Try . . . Catch Error Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             236

The Exception Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           236

Specifying a Retry Period  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       239

Using Nested Try . . . Catch Blocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                242

Comparing Error Handlers with Defensive  
Programming Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            242

One Step Further: The Exit Try Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               243

Chapter 9 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           244

	 10	 Creating Modules and Procedures  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 247
Working with Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               247

Creating a Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             248

Working with Public Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        251



	 Table of Contents	 xi

Creating Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 255

Writing Function Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         256

Function Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                257

Calling a Function Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    258

Using a Function to Perform a Calculation . . . . . . . . . . . . . . . . . . . . . . . .                         258

Writing Sub Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              262

Sub Procedure Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          262

Calling a Sub Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Using a Sub Procedure to Manage Input . . . . . . . . . . . . . . . . . . . . . . . . .                          264

One Step Further: Passing Arguments by Value  
and by Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   268

Chapter 10 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          270

	 11	 Using Arrays to Manage Numeric and String Data . .  .  .  .  .  .  .  .  .  . 273
Working with Arrays of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      273

Creating an Array  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              274

Declaring a Fixed-Size Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     275

Setting Aside Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          276

Working with Array Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    277

Declaring an Array and Assigning It Initial Values . . . . . . . . . . . . . . . . . . 278

Creating a Fixed-Size Array to Hold Temperatures . . . . . . . . . . . . . . . . .                  279

Creating a Dynamic Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       283

Preserving Array Contents by Using ReDim Preserve . . . . . . . . . . . . . . . . . . . .                     287

Using ReDim for Three-Dimensional Arrays  . . . . . . . . . . . . . . . . . . . . . .                       288

One Step Further: Processing Large Arrays  
by Using Methods in the Array Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   288

The Array Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                288

Chapter 11 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          295

	 12	 Working with Collections .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 297
Working with Object Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      297

Referencing Objects in a Collection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              298

Writing For Each . . . Next Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  298

Experimenting with Objects in the Controls Collection . . . . . . . . . . . . .              299

Using the Name Property in a For Each . . . Next Loop . . . . . . . . . . . . . .               302

Creating Your Own Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        304

Declaring New Collections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      304

One Step Further: VBA Collections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    309

Entering the Word Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       310

Chapter 12 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          311



xii	 Table of Contents

	 13	 Exploring Text Files and String Processing . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 313
Reading Text Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   313

The My Namespace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            314

The StreamReader Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         316

Using the ReadAllText Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   317

Writing Text Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    321

The WriteAllText Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        321

The StreamWriter Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         322

Using the WriteAllText Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  323

Processing Strings with the String Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                326

Sorting Text  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                        329

Working with ASCII Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      330

Sorting Strings in a Text Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     331

Examining the Sort Text Program Code . . . . . . . . . . . . . . . . . . . . . . . . . .                           334

Protecting Text with Basic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  336

One Step Further: Using the Xor Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              340

Examining the Encryption Program Code  . . . . . . . . . . . . . . . . . . . . . . . .                         342

Chapter 13 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          345

Part III	 Designing the User Interface

	 14	 Managing Windows Forms and Controls at Run Time . .  .  .  .  .  .  . 351
Adding New Forms to a Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     351

How Forms Are Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                352

Working with Multiple Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         352

Using the DialogResult Property in the Calling Form . . . . . . . . . . . . . . .                358

Positioning Forms on the Windows Desktop . . . . . . . . . . . . . . . . . . . . . . . . . . .                            359

Minimizing, Maximizing, and Restoring Windows  . . . . . . . . . . . . . . . . .                  364

Adding Controls to a Form at Run Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                364

Organizing Controls on a Form  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       367

One Step Further: Specifying the Startup Object  . . . . . . . . . . . . . . . . . . . . . . .                        371

Chapter 14 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          373

	 15	 Adding Graphics and Animation Effects  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 375
Adding Artwork by Using  
the System.Drawing Namespace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      376

Using a Form’s Coordinate System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               376

The System.Drawing.Graphics Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               376

Using the Form’s Paint Event  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    378



	 Table of Contents	 xiii

Adding Animation to Your Programs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  380

Moving Objects on the Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    380

The Location Property  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          381

Creating Animation by Using a Timer Object  . . . . . . . . . . . . . . . . . . . . .                      382

Expanding and Shrinking Objects While a Program Is Running . . . . . . . . . . .            386

One Step Further: Changing Form Transparency  . . . . . . . . . . . . . . . . . . . . . . .                        388

Chapter 15 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          390

	 16	 Inheriting Forms and Creating Base Classes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 393
Inheriting a Form by Using the Inheritance Picker  . . . . . . . . . . . . . . . . . . . . . .                       393

Creating Your Own Base Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       399

Adding a New Class to Your Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              401

One Step Further: Inheriting a Base Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               408

Chapter 16 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          412

	 17	 Working with Printers .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 415
Using the PrintDocument Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        415

Printing Text from a Text Box Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             420

Printing Multipage Text Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          424

One Step Further: Adding Print Preview and Page Setup Dialog Boxes . . . .     430

Chapter 17 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          437

Part IV	Database and Web Programming
	 18	 Getting Started with ADO.NET  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 441

Database Programming with ADO.NET  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                441

Database Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          442

Working with an Access Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               444

The Data Sources Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      452

Using Bound Controls to Display  
Database Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                458

One Step Further: SQL Statements, LINQ,  
and Filtering Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   461

Chapter 18 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          466

	 19	 Data Presentation Using the DataGridView Control  .  .  .  .  .  .  .  .  . 467
Using DataGridView to Display Database Records . . . . . . . . . . . . . . . . . . . . . .                       467

Formatting DataGridView Cells  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       479

Adding a Second Data Grid View Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               482

One Step Further: Updating the Original Database  . . . . . . . . . . . . . . . . . . . . .                      485

Chapter 19 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          488



xiv	 Table of Contents

	 20	 Creating Web Sites and Web Pages by Using Visual 
Web Developer and ASP.NET .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 491

Inside ASP.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                      491

Web Pages vs. Windows Forms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  493

Server Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                493

HTML Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

Building a Web Site by Using Visual  
Web Developer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     495

Considering Software Requirements  
for ASP.NET Programming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      495

Using the Web Page Designer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        498

Adding Server Controls to a Web Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  501

Writing Event Procedures for Web Page Controls  . . . . . . . . . . . . . . . . .                  504

Customizing the Web Site Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   509

Displaying Database Records on a Web Page . . . . . . . . . . . . . . . . . . . . . . . . . .                           512

One Step Further: Setting Web Site Titles  
in Internet Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  519

Chapter 20 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          522

Appendix: Where to Go for More Information  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  523

Index .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  529

Microsoft is interested in hearing your feedback so we can continually improve our books and learning  
resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!



		  37

Chapter 2

Writing Your First Program
After completing this chapter, you will be able to:

n	 Create the user interface for a new program.

n	 Set the properties for each object in your user interface.

n	 Write program code.

n	 Save and run the program.

n	 Build an executable file.

As you learned in Chapter 1, “Exploring the Visual Studio Integrated Development 
Environment,” the Microsoft Visual Studio 2010 Integrated Development Environment (IDE) 
contains several powerful tools to help you run and manage your programs. Visual Studio 
also contains everything you need to build your own applications for Windows and the Web 
from the ground up.

In this chapter, you’ll learn how to create a simple but attractive user interface with the 
controls in the Visual Studio Toolbox. Next you’ll learn how to customize the operation 
of these controls with property settings. Then you’ll see how to identify just what your 
program should do by writing program code. Finally, you’ll learn how to save and run your 
new program (a Las Vegas–style slot machine) and how to compile it as an executable file.

Lucky Seven: Your First Visual Basic Program
The Windows-based application you’re going to construct is Lucky Seven, a game program 
that simulates a lucky number slot machine. Lucky Seven has a simple user interface and can 
be created and compiled in just a few minutes using Microsoft Visual Basic. Here’s what your 
program will look like when it’s finished:

Table of Contents

Writing Your First Program  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  37
Lucky Seven: Your First Visual Basic Program . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             37

Programming Steps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  38

Creating the User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            38

Setting the Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                45

The Picture Box Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            49

Writing the Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     52

A Look at the Button1_Click Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Running Visual Basic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      58

Sample Projects on Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               59

Building an Executable File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            60

Deploying Your Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           62

One Step Further: Adding to a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 63

Chapter 2 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            64



38	 Part I  Getting Started with Microsoft Visual Basic 2010

Programming Steps
The Lucky Seven user interface contains two buttons, three lucky number boxes, a digital 
photo depicting your winnings, and the label “Lucky Seven.” I produced these elements 
by creating seven objects on the Lucky Seven form and then changing several properties 
for each object. After I designed the interface, I added program code for the Spin and End 
buttons to process the user’s button clicks and produce the random numbers. To re-create 
Lucky Seven, you’ll follow three essential programming steps in Visual Basic: Create the user 
interface, set the properties, and write the program code. Table 2-1 shows the process for 
Lucky Seven.

TABLE 2-1  Building the Lucky Seven Program

Programming Step Number of Items

1.  Create the user interface. 7 objects

2.  Set the properties. 13 properties

3.  Write the program code. 2 objects

Creating the User Interface
In this exercise, you’ll start building Lucky Seven by first creating a new project and then 
using controls in the Toolbox to construct the user interface.

Create a new project

	 1.	 Start Visual Studio 2010.

	 2.	 On the Visual Studio File menu, click New Project.

Tip  You can also start a new programming project by clicking the blue New Project link 
on the Start Page.

The New Project dialog box opens, as shown on the following page.

The New Project dialog box provides access to the major project types available for 
writing Windows and Web applications. If you indicated during setup that you are 
a Visual Basic programmer, Visual Basic is your primary development option (as shown 
here), but the other languages in Visual Studio (Visual C#, Visual C++, and Visual F#) 
are always available through this dialog box. Although you will select a basic Windows



	 Chapter 2  Writing Your First Program	 39

application project in this exercise, this dialog box is also the gateway to other types 
of development projects, such as a Web application, console application, Microsoft 
Office add-in, Windows Azure Cloud Service, Silverlight application, or Visual Studio 
deployment project.

Near the top of the New Project dialog box, you will notice a drop-down list box. 
This feature allows you to specify the version of the Microsoft .NET Framework that 
your application will target. This feature is sometimes called multi-targeting, meaning 
that through it, you can select the target environment that your program will run on. 
For example, if you retain the default selection of .NET Framework 4, any computer that 
your application will run on must have .NET Framework 4 installed. (Not to worry—the 
.NET Framework is usually installed as part of the operating system installation, or when 
you install a new Visual Basic program that you have written.) Unless you have a specific 
need, you can just leave this drop-down list at its default setting of .NET Framework 4. 
Visual Basic 2010 Express does not include this drop-down list. You’ll learn more about 
the .NET Framework in Chapter 5, “Visual Basic Variables and Formulas, and the .NET 
Framework.”

	 3.	 Click the Windows Forms Application icon in the central Templates area of the dialog 
box, if it is not already selected.

Visual Studio prepares the development environment for Visual Basic Windows 
application programming.



40	 Part I  Getting Started with Microsoft Visual Basic 2010

	 4.	 In the Name text box, type MyLucky7.

Visual Studio assigns the name MyLucky7 to your project. (You’ll specify a folder 
location for the project later.) I’m recommending the “My” prefix here so you 
don’t confuse your new application with the Lucky7 project I’ve created for you  
on disk.

Tip  If your New Project dialog box contains Location and Solution Name text boxes, 
you need to specify a folder location and solution name for your new programming 
project now. The presence of these text boxes is controlled by a check box in the Project 
And Solutions category of the Options dialog box, but it is not the default setting. (You 
display this dialog box by clicking the Options command on the Tools menu.) Throughout 
this book, you will be instructed to save your projects (or discard them) after you have 
completed the programming exercise. For more information about this “delayed saving” 
feature and default settings, see the section entitled “Customizing IDE Settings to Match 
Step-by-Step Exercises” in Chapter 1.

	 5.	 Click OK to create the new project in Visual Studio.

Visual Studio cleans the slate for a new programming project and displays the blank 
Windows form that you will use to build your user interface.

Now you’ll enlarge the form and create the two buttons in the interface.

Create the user interface

	 1.	 Point to the lower-right corner of the form until the mouse pointer changes to 
a resizing pointer, and then drag to increase the size of the form to make room for 
the objects in your program.

As you resize the form, scroll bars might appear in the Designer to give you access to 
the entire form you’re creating. Depending on your screen resolution and the Visual 
Studio tools you have open, you might not be able to see the entire form at once. 
Don’t worry about this—your form can be small, or it can fill the entire screen because 
the scroll bars give you access to the entire form.

Size your form so that it is about the size of the form shown on the following page. If 
you want to match my example exactly, you can use the width and height dimensions  
(485 pixels × 278 pixels) shown in the lower-right corner of the screen.

To see the entire form without obstruction, you can resize or close the other 
programming tools, as you learned in Chapter 1. (Return to Chapter 1 if you have 
questions about resizing windows or tools.)

Now you’ll practice adding a button object on the form.



	 Chapter 2  Writing Your First Program	 41

	 2.	 Click the Toolbox tab to display the Toolbox window in the IDE.

The Toolbox contains all the controls that you’ll use to build Visual Basic programs in 
this book. The controls suitable for creating a Windows application are visible now 
because you selected the Windows Application project type earlier. Controls are 
organized by type, and by default the Common Controls category is visible. (If the 
Toolbox is not visible now, click Toolbox on the View menu to display it.)

	 3.	 Double-click the Button control in the Toolbox, and then move the mouse pointer away 
from the Toolbox.

Visual Studio creates a default-sized button object on the form and hides the Toolbox, 
as shown here:



42	 Part I  Getting Started with Microsoft Visual Basic 2010

The button is named Button1 because it is the first button in the program. (You should make 
a mental note of this button name—you’ll see it again when you write your program code.) 
The new button object is selected and enclosed by resize handles. When Visual Basic is in 
design mode (that is, whenever the Visual Studio IDE is active), you can move objects on the 
form by dragging them with the mouse, and you can resize them by using the resize handles. 
While a program is running, however, the user can’t move user interface (UI) elements unless 
you’ve changed a property in the program to allow this. You’ll practice moving and resizing 
the button now.

Move and resize a button

	 1.	 Point to the button so that the pointer changes to a four-headed arrow, and then drag 
the button down and to the right.

The button moves across the surface of the form. If you move the object near the edge 
of the form or another object (if other objects are present), it automatically aligns itself 
to a hidden grid when it is an inch or so away. A little blue “snapline” also appears to 
help you gauge the distance of this object from the edge of the form or the other 
object. The grid is not displayed on the form by default, but you can use the snapline 
to judge distances with almost the same effect.

	 2.	 Position the mouse pointer on the lower-right corner of the button.

When the mouse pointer rests on a resize handle of a selected object, it 
becomes a resizing pointer. You can use the resizing pointer to change the size  
of an object.

	 3.	 Enlarge the button by dragging the pointer down and to the right.

When you release the mouse button, the button changes size and snaps to the grid.

	 4.	 Use the resizing pointer to return the button to its original size.

Now you’ll add a second button to the form, below the first button.

Add a second button

	 1.	 Click the Toolbox tab to display the Toolbox.

	 2.	 Click the Button control in the Toolbox (single-click this time), and then move the 
mouse pointer over the form.

The mouse pointer changes to crosshairs and a button icon. The crosshairs are 
designed to help you draw the rectangular shape of the button on the form, and you 
can use this method as an alternative to double-clicking to create a control of the 
default size.

	 3.	 Click and drag the pointer down and to the right. Release the mouse button to 
complete the button, and watch it snap to the form.



	 Chapter 2  Writing Your First Program	 43

	 4.	 Resize the button object so that it is the same size as the first button, and then move it 
below the first button on the form. (Use the snapline feature to help you.)

Tip  At any time, you can delete an object and start over again by selecting the object 
on the form and then pressing DELETE. Feel free to create and delete objects to practice 
creating your user interface.

Now you’ll add the labels used to display the numbers in the program. A label is a special 
user interface element designed to display text, numbers, or symbols when a program runs. 
When the user clicks the Lucky Seven program’s Spin button, three random numbers appear 
in the label boxes. If one of the numbers is a 7, the user wins.

Add the number labels

	 1.	 Double-click the Label control in the Toolbox.

Visual Studio creates a label object on the form. The label object is just large enough 
to hold the text contained in the object (it is rather small now), but it can be resized.

	 2.	 Drag the Label1 object to the right of the two button objects.

Your form looks something like this:

	 3.	 Double-click the Label control in the Toolbox to create a second label object.

This label object will be named Label2 in the program.

	 4.	 Double-click the Label control again to create a third label object.

	 5.	 Move the second and third label objects to the right of the first one on the form.

Allow plenty of space between the three labels because you will use them to display 
large numbers when the program runs.

Now you’ll use the Label control to add a descriptive label to your form. This will be 
the fourth and final label in the program.

	 6.	 Double-click the Label control in the Toolbox.



44	 Part I  Getting Started with Microsoft Visual Basic 2010

	 7.	 Drag the Label4 object below the two command buttons.

When you’ve finished, your four labels should look like those in the following 
screen shot. (You can move your label objects if they don’t look quite right.)

Now you’ll add a picture box to the form to graphically display the payout you’ll receive 
when you draw a 7 and hit the jackpot. A picture box is designed to display bitmaps, icons, 
digital photos, and other artwork in a program. One of the best uses for a picture box is to 
display a JPEG image file.

Add a picture

	 1.	 Click the PictureBox control in the Toolbox.

	 2.	 Using the control’s drawing pointer, create a large rectangular box below the second 
and third labels on the form.

Leave a little space below the labels for their size to grow as I mentioned earlier. 
When you’ve finished, your picture box object looks similar to this:

This object will be named PictureBox1 in your program; you’ll use this name later in 
the program code.

Now you’re ready to customize your interface by setting a few properties.



	 Chapter 2  Writing Your First Program	 45

Setting the Properties
As you discovered in Chapter 1, you can change properties by selecting objects on the form 
and changing their settings in the Properties window. You’ll start by changing the property 
settings for the two buttons.

Set the button properties

	 1.	 Click the first button (Button1) on the form.

The button is selected and is surrounded by resize handles.

	 2.	 Click the Properties window title bar.

Tip  If the Properties window isn’t visible, click the Properties Window command on the 
View menu, or press F4.

	 3.	 At the top of the Properties window, click the Categorized button.

For information about categorized properties, see the section entitled “The Properties 
Window” in Chapter 1.

	 4.	 Resize the Properties window (if necessary) so that there is plenty of room to see the 
property names and their current settings.

Once you get used to setting properties, you will probably use the Properties window 
without enlarging it, but making it bigger helps when you first try to use it. The 
Properties window in the following screen shot is a good size for setting properties:



46	 Part I  Getting Started with Microsoft Visual Basic 2010

The Properties window lists the settings for the first button. These include settings 
for the background color, text, font height, and width of the button. Because there are 
so many properties, Visual Studio organizes them into categories and displays them 
in outline view. If you want to see the properties in a category, click the arrow sign (>) 
next to the category title.

	 5.	 If it is not already visible, scroll in the Properties window until you see the Text property 
located in the Appearance category.

	 6.	 Double-click the Text property in the first column of the Properties window.

The current Text setting (“Button1”) is highlighted in the Properties window.

	 7.	 Type Spin, and then press ENTER.

The Text property changes to “Spin” in the Properties window and on the button 
on the form. Now you’ll change the Text property of the second button to “End.” 
(You’ll select the second button in a new way this time.)

	 8.	 Open the Object list at the top of the Properties window.

A list of the interface objects in your program appears as follows:

	 9.	 Click Button2 System.Windows.Forms.Button (the second button) in the list box.

The property settings for the second button appear in the Properties window, and 
Visual Studio highlights Button2 on the form.

	 10.	 Double-click the current Text property (“Button2”), type End, and then press ENTER.

The text of the second button changes to “End.”



	 Chapter 2  Writing Your First Program	 47

Tip  Using the Object list is a handy way to switch between objects in your program. 
You can also switch between objects on the form by clicking each object.

Now you’ll set the properties for the labels in the program. The first three labels will hold 
the random numbers generated by the program and will have identical property settings. 
(You’ll set most of them as a group.) The descriptive label settings will be slightly different.

Set the number label properties

	 1.	 Click the first number label (Label1), hold down the SHIFT key, click the second 
and third number labels, and then release the SHIFT key. (If the Properties window is 
in the way, move it to a new place.)

A selection rectangle and resize handles appear around each label you click. You’ll 
change the TextAlign, BorderStyle, and Font properties now so that the numbers that 
will appear in the labels will be centered, boxed, and identical in font and font size. 
(All these properties are located in the Appearance category of the Properties window.) 
You’ll also set the AutoSize property to False so that you can change the size of the 
labels according to your precise specifications. (The AutoSize property is located in the 
Layout category.)

Tip  When more than one object is selected, only those properties that can be changed 
for the group are displayed in the Properties window.

	 2.	 Click the AutoSize property in the Properties window, and then click the arrow that 
appears in the second column.

	 3.	 Set the AutoSize property to False so that you can size the labels manually.

	 4.	 Click the TextAlign property, and then click the arrow that appears in the second 
column.

A graphical assortment of alignment options appears in the list box; you can use 
these settings to align text anywhere within the borders of the label object.

	 5.	 Click the center option (MiddleCenter).

The TextAlign property for each of the selected labels changes to MiddleCenter.

	 6.	 Click the BorderStyle property, and then click the arrow that appears in the second 
column.

The valid property settings (None, FixedSingle, and Fixed3D) appear in the list box.

	 7.	 Click FixedSingle in the list box to add a thin border around each label.



48	 Part I  Getting Started with Microsoft Visual Basic 2010

	 8.	 Click the Font property, and then click the ellipsis button (the button with three dots 
that’s located next to the current font setting).

The Font dialog box opens.

	 9.	 Change the font to Times New Roman, the font style to Bold, and the font size to 24, 
and then click OK.

The label text appears in the font, style, and size you specified.

Now you’ll set the text for the three labels to the number 0—a good “placeholder” for 
the numbers that will eventually fill these boxes in your game. (Because the program 
produces the actual numbers, you could also delete the text, but putting a placeholder 
here gives you something to base the size of the labels on.)

	 10.	 Click a blank area on the form to remove the selection from the three labels, and then 
click the first label.

	 11.	 Double-click the Text property, type 0, and then press ENTER.

The text of the Label1 object is set to 0. You’ll use program code to set this property 
to a random “slot machine” number later in this chapter.

	 12.	 Change the text in the second and third labels on the form to 0 also.

	 13.	 Move and resize the labels now so that they are appropriately spaced.

Your form looks something like this:

Now you’ll change the Text, Font, and ForeColor properties of the fourth label.

Set the descriptive label properties

	 1.	 Click the fourth label object (Label4) on the form.

	 2.	 Change the Text property in the Properties window to Lucky Seven.

	 3.	 Click the Font property, and then click the ellipsis button.

	 4.	 Use the Font dialog box to change the font to Arial, the font style to Bold, and the font 
size to 18. Then click OK.

The font in the Label4 object is updated, and the label is resized automatically to hold 
the larger font size because the object’s AutoSize property is set to True.



	 Chapter 2  Writing Your First Program	 49

	 5.	 Click the ForeColor property in the Properties window, and then click the arrow in 
the second column.

Visual Studio displays a list box with Custom, Web, and System tabs for setting the 
foreground colors (the color of text) of the label object. The Custom tab offers many of 
the colors available in your system. The Web tab sets colors for Web pages and lets you 
pick colors using their common names. The System tab displays the current colors used 
for user interface elements in your system.

	 6.	 Click the purple color on the Custom tab.

The text in the label box changes to purple.

Now you’re ready to set the properties for the last object.

The Picture Box Properties
When the person playing your game hits the jackpot (that is, when at least one 7 appears in 
the number labels on the form), the picture box object will contain a picture in JPEG format 
of a person dispensing money. (I am supplying you with this digitized image, but you can 
substitute your own if you like.) You need to set the SizeMode property to accurately size the 
picture and set the Image property to specify the name of the JPEG file that you will load 
into the picture box. You also need to set the Visible property, which specifies the picture 
state at the beginning of the program.

Set the picture box properties

	 1.	 Click the picture box object on the form.

	 2.	 Click the SizeMode property in the Properties window (listed in the Behavior category), 
click the arrow in the second column, and then click StretchImage.

Setting SizeMode to StretchImage before you open a graphic causes Visual Studio to 
resize the graphic to the exact dimensions of the picture box. (Typically, you set this 
property before you set the Image property.)

	 3.	 Click the Image property in the Properties window, and then click the ellipsis button 
in the second column.

The Select Resource dialog box opens.

	 4.	 Click the Local Resource radio button, and then click the Import button.

	 5.	 In the Open dialog box, navigate to the C:\Vb10sbs\Chap02 folder.

This folder contains the digital photo PayCoins.jpg.

	 6.	 Select PayCoins.jpg, and then click Open.

An screen shot of one person paying another appears in the Select Resource 
dialog box. (The letter “W” represents winning.)



50	 Part I  Getting Started with Microsoft Visual Basic 2010

	 7.	 Click OK.

The PayCoins photo is loaded into the picture box. Because the photo is relatively small 
(24 KB), it opens quickly on the form.

	 8.	 Resize the picture box object now to fix any distortion problems that you see in the 
image.

I sized my picture box object to be 144 pixels wide by 146 pixels high. You can match 
this size by using the width and height dimensions located on the lower-right side 
of the Visual Studio IDE. (The dimensions of the selected object are given on the 
lower-right side, and the location on the form of the object’s upper-left corner is given 
to the left of the dimensions.)

This particular image displays best when the picture box object retains a square shape.

Note  As you look at the picture box object, you might notice a tiny shortcut arrow called 
a smart tag near its upper-right corner. This smart tag is a button that you can click to 
quickly change a few common picture box settings and open the Select Resource dialog 
box. (You’ll see the smart tag again in Chapter 4, “Working with Menus, Toolbars, and 
Dialog Boxes,” when you use the ToolStrip control.)

Now you’ll change the Visible property to False so that the image will be invisible when 
the program starts.

	 9.	 Click the Visible property in the Behavior category of the Properties window, and then 
click the arrow in the second column.

The valid settings for the Visible property appear in a list box.

	 10.	 Click False to make the picture invisible when the program starts.



	 Chapter 2  Writing Your First Program	 51

Setting the Visible property to False affects the picture box when the program runs, but 
not now, while you’re designing it. Your completed form looks similar to this:

Tip  You can also double-click property names that have True and False settings (so-called 
Boolean properties), to toggle back and forth between True and False. Default Boolean 
properties are shown in regular type, and changed settings appear in bold.

	 11.	 You are finished setting properties for now, so if your Properties window is floating, 
hold down the CTRL key and double-click its title bar to return it to the docked 
position.

Reading Properties in Tables
In this chapter, you’ve set the properties for the Lucky Seven program step by step. 
In future chapters, the instructions to set properties will be presented in table format 
unless a setting is especially tricky. Table 2-2 lists the properties you’ve set so far in the 
Lucky Seven program, as they’d look later in the book. Settings you need to type in are 
shown in quotation marks. You shouldn’t type the quotation marks.

TABLE 2-2  Lucky Seven Properties

Object Property Setting

Button1 Text “Spin”

Button2 Text “End”

Label1, Label2, Label3 AutoSize 
BorderStyle 
Font 
Text 
TextAlign

False 
FixedSingle 
Times New Roman, Bold, 24-point 
“0” 
MiddleCenter

Label4 Text 
Font 
ForeColor

“Lucky Seven” 
Arial, Bold, 18-point 
Purple

PictureBox1 Image 
SizeMode 
Visible

“C:\Vb10sbs\Chap02\Paycoins.jpg” 
StretchImage 
False



52	 Part I  Getting Started with Microsoft Visual Basic 2010

Writing the Code
Now you’re ready to write the code for the Lucky Seven program. Because most of the 
objects you’ve created already “know” how to work when the program runs, they’re ready 
to receive input from the user and process it. The inherent functionality of objects is one 
of the great strengths of Visual Studio and Visual Basic—after objects are placed on a form 
and their properties are set, they’re ready to run without any additional programming. 
However, the “meat” of the Lucky Seven game—the code that actually calculates random 
numbers, displays them in boxes, and detects a jackpot—is still missing from the program. 
This computing logic can be built into the application only by using program statements—
code that clearly spells out what the program should do at each step of the way. Because 
the Spin and End buttons drive the program, you’ll associate the code for the game with 
those buttons. You enter and edit Visual Basic program statements in the Code Editor.

In the following steps, you’ll enter the program code for Lucky Seven in the Code Editor.

Use the Code Editor

	 1.	 Double-click the End button on the form.

The Code Editor appears as a tabbed document window in the center of the Visual 
Studio IDE, as shown here:



	 Chapter 2  Writing Your First Program	 53

Inside the Code Editor are program statements associated with the current form. 
Program statements that are used together to perform some action are typically 
grouped in a programming construct called a procedure. A common type of procedure 
is a Sub procedure, sometimes called a subroutine. Sub procedures include a Sub 
keyword in the first line and end with End Sub. (I’ll talk about the Public and Private 
keywords later.) Procedures are typically executed when certain events occur, such as 
when a button is clicked. When a procedure is associated with a particular object and 
an event, it is called an event handler or an event procedure.

When you double-clicked the End button (Button2), Visual Studio automatically added 
the first and last lines of the Button2_Click event procedure, as the following code 
shows. (The first line was wrapped to stay within the book margins.) You may notice 
other bits of code in the Code Editor (words like Public and Class), which Visual Studio 
has added to define important characteristics of the form, but I won’t emphasize 
them here. 

Private Sub Button2_Click(ByVal sender As System.Object, _  

  ByVal e As System.EventArgs) Handles Button2.Click 

End Sub

The body of a procedure fits between these lines and is executed whenever a user 
activates the interface element associated with the procedure. In this case, the event 
is a mouse click, but as you’ll see later in the book, it could also be a different type 
of event.

	 2.	 Type End, and then press the ENTER key.

When you type the statement, Visual Studio recognizes End as a unique reserved word 
or keyword and displays it in a list box with Common and All tabs. Microsoft calls this 
auto-extend feature IntelliSense because it tries to intelligently help you write code, 
and you can browse through various Visual Basic keywords and objects alphabetically. 
(In this way, the language is partially discoverable through the IDE itself.) 

After you press the ENTER key, the letters in End turn blue and are indented, indicating 
that Visual Basic recognizes End as one of several hundred unique keywords within 
the Visual Basic language. You use the End keyword to stop your program and 
remove it from the screen. In this case, End is also a complete program statement, 
a self-contained instruction executed by the Visual Basic compiler, the part of Visual 
Studio that processes or parses each line of Visual Basic source code, combining the 
result with other resources to create an executable file. Program statements are a little 
like complete sentences in a human language—statements can be of varying lengths 
but must follow the grammatical “rules” of the compiler. In Visual Studio, program 
statements can be composed of keywords, properties, object names, variables, 
numbers, special symbols, and other values. You’ll learn more about how program 
statements are constructed in Chapter 5.

As you enter program statements and make other edits, the Code Editor handles many 
of the formatting details for you, including adjusting indentation and spacing and 



54	 Part I  Getting Started with Microsoft Visual Basic 2010

adding any necessary parentheses. The exact spelling, order, and spacing of items within 
program statements is referred to as statement syntax. In the early days of compilers, 
programmers were almost totally responsible for getting the precise syntax for each 
program statement correct on their own, but now sophisticated development tools such 
as Visual Studio help immensely with the construction of accurate program statements.

When you pressed the ENTER key, the End statement was indented to set it apart 
from the Private Sub and End Sub statements. This indenting scheme is one of the 
programming conventions you’ll see throughout this book to keep your programs clear 
and readable. The group of conventions regarding how code is organized in a program 
is often referred to as program style.

Now that you’ve written the code associated with the End button, you’ll write code for the 
Spin button. These program statements will be a little more extensive and will give you 
a chance to learn more about statement syntax and program style. You’ll study many of the 
program statements later in this book, so you don’t need to know everything about them 
now. Just focus on the general structure of the code and on typing the program statements 
exactly as they are printed.

Write code for the Spin button

	 1.	 At the top of the Solution Explorer window, click the View Designer button in the 
Solution Explorer window to display your form again.

Note  When the Code Editor is visible, you won’t be able to see the form you’re working 
on. The View Designer button is one mechanism you can use to display it again. (If more 
than one form is loaded in Solution Explorer, click the form that you want to display first.) 
You can also click the Form1.vb [Design] tab at the top edge of the Code Editor. To display 
the Code Editor again, click the View Code button in Solution Explorer.

	 2.	 Double-click the Spin button.

After a few moments, the Code Editor appears, and an event procedure associated with 
the Button1 button appears near the Button2 event procedure.

Although you changed the text of this button to “Spin,” its name in the program is 
still Button1. (The name and the text of an interface element can be different to suit 
the needs of the programmer.) Each object can have several procedures associated 
with it, one for each event it recognizes. The click event is the one you’re interested 
in now because users will click the Spin and End buttons when they run the program.

	 3.	 Type the following program lines between the Private Sub and End Sub statements. 
Press ENTER after each line, press TAB to indent, and take care to type the program 
statements exactly as they appear here. (The Code Editor will scroll to the left as you 
enter the longer lines.) If you make a mistake (usually identified by a jagged underline), 
delete the incorrect statements and try again.



	 Chapter 2  Writing Your First Program	 55

Tip  As you enter the program code, Visual Basic formats the text and displays different 
parts of the program in color to help you identify the various elements. When you begin 
to type a property, Visual Basic also displays the available properties for the object you’re 
using in a list box, so you can double-click the property or keep typing to enter it yourself. 
If Visual Basic displays an error message, you might have misspelled a program statement. 
Check the line against the text in this book, make the necessary correction, and continue 
typing. (You can also delete a line and type it from scratch.) In addition, Visual Basic might 
add necessary code automatically. For example, when you type the following code, Visual 
Basic automatically adds the End If line. Readers of previous editions of this book have 
found this first typing exercise to be the toughest part of this chapter—“But Mr. Halvorson, 
I know I typed it just as you wrote it!”—so please give this program code your closest 
attention. I promise you, it works!

PictureBox1.Visible = False  ' hide picture 

Label1.Text = CStr(Int(Rnd() * 10))  ' pick numbers 

Label2.Text = CStr(Int(Rnd() * 10)) 

Label3.Text = CStr(Int(Rnd() * 10)) 

' if any number is 7 display picture and beep 

If (Label1.Text = "7") Or (Label2.Text = "7") _ 

Or (Label3.Text = "7") Then 

   PictureBox1.Visible = True 

   Beep() 

End If

When you’ve finished, the Code Editor looks as shown in the following screen shot:



56	 Part I  Getting Started with Microsoft Visual Basic 2010

	 4.	 Click the Save All command on the File menu to save your additions to the program.

The Save All command saves everything in your project—the project file, the form 
file, any code modules, and other related components in your application. Since 
this is the first time that you have saved your project, the Save Project dialog box 
opens, prompting you for the name and location of the project. (If your copy of 
Visual Studio is configured to prompt you for a location when you first create your 
project, you won’t see the Save Project dialog box now—Visual Studio just saves 
your changes.)

	 5.	 Browse and select a location for your files.

I recommend that you use the C:\Vb10sbs\Chap02 folder (the location of the book’s 
sample files), but the location is up to you. Since you used the “My” prefix when you 
originally opened your project, this version won’t overwrite the Lucky7 practice file that 
I built for you on disk.

	 6.	 Clear the Create Directory For Solution check box.

When this check box is selected, it creates a second folder for your program’s solution 
files, which is not necessary for solutions that contain only one project (the situation for 
most programs in this book).

	 7.	 Click Save to save your files.

Note  If you want to save just the item you are currently working on (the form, the code 
module, or something else), you can use the Save command on the File menu. If you want 
to save the current item with a different name, you can use the Save As command.

A Look at the Button1_Click Procedure
The Button1_Click procedure is executed when the user clicks the Spin button on the form. 
The procedure uses some pretty complicated statements, and because I haven’t formally 
introduced them yet, it might look a little confusing. However, if you take a closer look, 
you’ll probably see a few things that look familiar. Taking a peek at the contents of these 
procedures will give you a feel for the type of program code you’ll be creating later in 
this book. (If you’d rather not stop for this preview, feel free to skip to the next section, 
“Running Visual Basic Applications.”)

The Button1_Click procedure performs three tasks:

n	 It hides the digital photo.

n	 It creates three random numbers for the number labels.

n	 It displays the photo when the number 7 appears.



	 Chapter 2  Writing Your First Program	 57

Let’s look at each of these steps individually.

Hiding the photo is accomplished with the following line:

PictureBox1.Visible = False  ' hide picture

This line is made up of two parts: a program statement and a comment.

The PictureBox1.Visible = False program statement sets the Visible property of the picture 
box object (PictureBox1) to False (one of two possible settings). You might remember that 
you set this property to False once before by using the Properties window. You’re doing 
it again now in the program code because the first task is a spin and you need to clear 
away a photo that might have been displayed in a previous game. Because the property 
will be changed at run time and not at design time, you must set the property by using 
program code. This is a handy feature of Visual Basic, and I’ll talk about it more in Chapter 3, 
“Working with Toolbox Controls.”

The second part of the first line (the part displayed in green type on your screen) is called 
a comment. Comments are explanatory notes included in program code following a single 
quotation mark (‘). Programmers use comments to describe how important statements work 
in a program. These notes aren’t processed by Visual Basic when the program runs; they exist 
only to document what the program does. You’ll want to use comments often when you 
write Visual Basic programs to leave an easy-to-understand record of what you’re doing.

The next three lines handle the random number computations. Does this concept sound 
strange? You can actually make Visual Basic generate unpredictable numbers within specific 
guidelines—in other words, you can create random numbers for lottery contests, dice 
games, or other statistical patterns. The Rnd function in each line creates a random number 
between 0 and 1 (a number with a decimal point and several decimal places), and the Int 
function returns the integer portion of the result of multiplying the random number by 10. 
This computation creates random numbers between 0 and 9 in the program—just what you 
need for this particular slot machine application.

Label1.Text = CStr(Int(Rnd() * 10))  ' pick numbers

You then need to jump through a little hoop in your code. You need to copy these random 
numbers into the three label boxes on the form, but first the numbers need to be converted to 
text with the CStr (convert to string) function. Notice how CStr, Int, and Rnd are all connected in 
the program statement—they work collectively to produce a result like a mathematical formula. 
After the computation and conversion, the values are assigned to the Text properties of the 
first three labels on the form, and the assignment causes the numbers to be displayed in bold, 
24-point, Times New Roman font in the three number labels.

The last group of statements in the program checks whether any of the random numbers is 7. 
If one or more of them is, the program displays the graphical depiction of a payout, and a 
beep announces the winnings.



58	 Part I  Getting Started with Microsoft Visual Basic 2010

' if any number is 7 display picture and beep 

If (Label1.Text = "7") Or (Label2.Text = "7") _ 

Or (Label3.Text = "7") Then 

    PictureBox1.Visible = True 

    Beep() 

End If

Each time the user clicks the Spin button, the Button1_Click procedure is executed, or called, 
and the program statements in the procedure are run again.

Running Visual Basic Applications
Congratulations! You’re ready to run your first real program. To run a Visual Basic program 
from the development environment, you can do any of the following:

n	 Click Start Debugging on the Debug menu.

n	 Click the Start Debugging button on the Standard toolbar.

n	 Press F5.

Try running your Lucky Seven program now. If Visual Basic displays an error message, you might 
have a typing mistake or two in your program code. Try to fix it by comparing the printed version 
in this book with the one you typed, or load Lucky7 from your hard disk and run it.

Run the Lucky Seven program

	 1.	 Click the Start Debugging button on the Standard toolbar.

The Lucky Seven program compiles and runs in the IDE. After a few seconds, the user 
interface appears, just as you designed it.

	 2.	 Click the Spin button.

The program picks three random numbers and displays them in the labels on the form, 
as follows:



	 Chapter 2  Writing Your First Program	 59

Because a 7 appears in the first label box, the digital photo depicting the payoff 
appears, and the computer beeps. You win! (The sound you hear depends on your 
Default Beep setting in the Sound Control Panel. To make this game sound really cool, 
change the Default Beep sound to something more dynamic.)

	 3.	 Click the Spin button 15 or 16 more times, watching the results of the spins in the 
number boxes.

About half the time you spin, you hit the jackpot—pretty easy odds. (The actual odds 
are about 2.8 times out of 10; you’re just lucky at first.) Later on, you might want to 
make the game tougher by displaying the photo only when two or three 7s appear, 
or by creating a running total of winnings.

	 4.	 When you’ve finished experimenting with your new creation, click the End button.

The program stops, and the development environment reappears on your screen.

Tip  If you run this program again, you might notice that Lucky Seven displays exactly the 
same sequence of random numbers. There is nothing wrong here—the Visual Basic Rnd 
function was designed to display a repeating sequence of numbers at first so that you can 
properly test your code using output that can be reproduced again and again. To create 
truly “random” numbers, use the Randomize function in your code, as shown in the 
exercise at the end of this chapter. The .NET Framework, which you’ll learn to use later, also 
supplies random number functions.

Sample Projects on Disk
If you didn’t build the MyLucky7 project from scratch (or if you did build the project and want to 
compare what you created to what I built for you as I wrote the chapter), take a moment to open 
and run the completed Lucky7 project, which is located in the C:\Vb10sbs\Chap02\Lucky7 folder 
on your hard disk (the default location for the practice files for this chapter). If you need a refresher 
course on opening projects, see the detailed instructions in Chapter 1. If you are asked if you want 
to save changes to the MyLucky7 project, be sure to click Save.

This book is a step-by-step tutorial, so you will benefit most from building the projects on your 
own and experimenting with them. But after you have completed the projects, it is often a 
good idea to compare what you have with the practice file “solution” that I provide, especially 
if you run into trouble. To make this easy, I will give you the name of the solution files on disk 
before you run the completed program in most of the step-by-step exercises.

After you have compared the MyLucky7 project to the Lucky7 solution files on disk, reopen 
MyLucky7 and prepare to compile it as an executable file. If you didn’t create MyLucky7, use 
my solution file to complete the exercise.



60	 Part I  Getting Started with Microsoft Visual Basic 2010

Building an Executable File
Your last task in this chapter is to complete the development process and create an 
application for Windows, or an executable file. (Had you created a different project type, 
of course, such as a Web application, the result of your development efforts would have 
been a different type of file—but we’ll discuss this later.) Windows applications created with 
Visual Studio have the file name extension .exe and can be run on any system that contains 
Windows and the necessary support files. (Visual Basic installs these support files—including 
the .NET Framework files—automatically.) If you plan to distribute your applications, see the 
section entitled “Deploying Your Application” later in the chapter.

At this point, you need to know that Visual Studio can create two types of executable files 
for your Windows application project: a debug build and a release build.

Debug builds are created automatically by Visual Studio when you create and test 
your program. They are stored in a folder called Bin\Debug within your project folder. 
The debug executable file contains debugging information that makes the program run 
slightly slower.

Release builds are optimized executable files stored in the Bin\Release folder within your 
project. To customize the settings for your release build, you click the [ProjectName] 
Properties command on the Project menu, and then click the Compile tab, where you see 
a list of compilation options that looks like this:



	 Chapter 2  Writing Your First Program	 61

Try creating a release build named MyLucky7.exe now.

Create an executable file

	 1.	 On the Build menu, click the Build MyLucky7 command.

The Build command creates a Bin\Release folder in which to store your project (if the 
folder doesn’t already exist) and compiles the source code in your project. The result 
is an executable file of the Application type named MyLucky7.exe. To save you 
time, Visual Studio often creates temporary executable files while you develop your 
application; however, it’s always a good idea to recompile your application manually 
with the Build or Rebuild command when you reach an important milestone.

Try running this program outside the Visual Studio IDE now from the Windows 
Start menu.

	 2.	 On the Windows taskbar, click Start.

The next command depends on the version of Windows you’re using.

	 3.	 If you have Windows 7 or Windows Vista, type run in the Search text box and press 
ENTER to open the Run dialog box. If you have Windows XP or earlier, click the Run 
command to open the Run dialog box.

	 4.	 Click Browse and then navigate to the C:\Vb10sbs\Chap02\Mylucky7\Bin\Release folder. 

	 5.	 Click the MyLucky7.exe application icon, click Open, and then click OK.

The Lucky Seven program loads and runs in Windows. Because this is a simple test 
application and it does not possess a formal publisher certificate that emphasizes its 
reliability or authenticity, you may see the following message: “The publisher could not 
be verified. Are you sure you want to run this software?” If this happens to you, click 
Yes to run the program anyway. (Creating such certificates is beyond the scope of this 
chapter, but this program is quite safe.)

	 6.	 Click Spin a few times to verify the operation of the game, and then click End.

Tip  You can also run Windows applications, including compiled Visual Basic programs, by 
opening Windows Explorer and double-clicking the executable file. To create a shortcut 
icon for MyLucky7.exe on the Windows desktop, right-click the Windows desktop, point to 
New, and then click Shortcut. When you’re prompted for the location of your application 
file, click Browse, and select the MyLucky7.exe executable file. Click the OK, Next, and 
Finish buttons. Windows places an icon on the desktop that you can double-click to run 
your program.

	 7.	 On the File menu, click Exit to close Visual Studio and the MyLucky7 project.

The Visual Studio development environment closes.



62	 Part I  Getting Started with Microsoft Visual Basic 2010

Deploying Your Application
Visual Studio helps you distribute your Visual Basic applications by providing several options 
for deployment—that is, for installing the application on one or more computer systems. 
Since the release of Visual Studio in 2002, Visual Basic applications have been compiled as 
assemblies—deployment units consisting of one or more files necessary for the program 
to run. Assemblies contain four elements: Microsoft intermediate language (MSIL) code, 
metadata, a manifest, and supporting files and resources. Visual Studio 2010 continues to 
offer this same basic deployment architecture, with some noteworthy improvements for 
different platforms and application types.

How do assemblies actually work? First, assemblies are so comprehensive and self-describing 
that Visual Studio applications don’t actually need to be formally registered with the 
operating system to run. This means that theoretically a Visual Basic 2010 application can be 
installed by simply copying the assembly for the program to a second computer that has the 
correct version of the .NET Framework installed—a process called XCOPY installation, after 
the MS-DOS XCOPY command that copies a complete directory (folder) structure from one 
location to another. In practice, however, it isn’t practical to deploy Visual Basic applications 
by using a copy procedure such as XCOPY (via the command prompt) or Windows Explorer. 
For commercial applications, an installation program with a graphical user interface is usually 
preferred, and it’s often desirable to register the program with the operating system so 
that it can be uninstalled later by using Control Panel. In addition, it is often useful to take 
advantage of the Web for an application’s initial deployment and to have an application 
check the Web periodically for updates.

Although the advanced options related to deployment and security go beyond the scope of 
this book, you should be familiar with your deployment options. To manage the deployment 
process, Visual Studio 2010 supports two deployment technologies, ClickOnce and Windows 
Installer.

Essentially, ClickOnce is a robust Web-based publishing technology that allows you to control 
how applications are made available to users via the Internet, although ClickOnce installations 
can also be distributed via CD-ROM. With ClickOnce, you can create an installation service 
for Windows applications, Office solutions, or console applications that users can access on 
their own with minimal interaction. With ClickOnce, you can specify prerequisites, such as 
a particular version of the .NET Framework, and you can easily publish updates on a Web page 
or a network file share to make improvements to your program. You can get started with 
ClickOnce at any time by using the Publish command on the Build menu. And you can control 
how ClickOnce works by setting properties using the Properties command on the Project 
menu. (Click the Publish tab in the Project Designer for specific features.)



	 Chapter 2  Writing Your First Program	 63

Windows Installer is a more classic installation process. In Visual Studio, you add a setup or 
a Windows Installer project to your solution, which automatically creates a setup program 
for the application. The installer package is distributed to your users, and individual users 
run the setup file and work through a wizard to install the application. The setup project 
can be customized to allow for different methods of installation, such as from CD-ROMs 
or Web servers. You can get started with Windows Installer by using the New Project 
command on the File menu to create a custom setup project. (Select the Setup And 
Deployment\Visual Studio Installer option under Other Project Types to see the list of 
available setup projects.)

Whether you choose ClickOnce or Windows Installer, you’ll find that Visual Studio 2010 
has brought many improvements to the installation process, and these technologies will 
directly benefit you and your customers. For additional information, see the online Help 
documentation related to the installation option that you want to use.

One Step Further: Adding to a Program
You can restart Visual Studio at any time and work on a programming project you’ve stored 
on disk. You’ll restart Visual Studio now and add a Randomize statement to the Lucky Seven 
program.

Reload Lucky Seven

	 1.	 On the Windows taskbar, click Start, click All Programs, click Microsoft Visual Studio 
2010, and then click the Microsoft Visual Studio 2010 program icon (or the Microsoft 
Visual Basic 2010 Express program icon, if you’re using Visual Basic 2010 Express).

A list of the projects that you’ve most recently worked on appears on the Visual Studio 
Start Page in the Recent Project pane. Because you just finished working with Lucky 
Seven, the MyLucky7 project should be first on the list.

	 2.	 Click the MyLucky7 link to open the Lucky Seven project.

The Lucky Seven program opens, and the MyLucky7 form appears. (If you don’t see 
the form, click Form1.vb in Solution Explorer, and then click the View Designer button.)

Now you’ll add the Randomize statement to the Form_Load procedure, a special 
procedure that is associated with the form and that is executed each time the 
program is started.

	 3.	 Double-click the form (not one of the objects) to display the Form_Load procedure.

The Form_Load procedure appears in the Code Editor, as shown here:



64	 Part I  Getting Started with Microsoft Visual Basic 2010

	 4.	 Type Randomize, and then press ENTER.

The Randomize statement is added to the program and will be executed each time 
the program starts. Randomize uses the system clock to create a truly random 
starting point, or seed, for the Rnd statement used in the Button1_Click procedure. 
As I mentioned earlier, without the Randomize statement, the Lucky Seven program 
produces the same string of random spins every time you restart the program. With 
Randomize in place, the program spins randomly every time it runs, and the numbers 
don’t follow a recognizable pattern.

	 5.	 Run the new version of Lucky Seven, and then save the project. If you plan to use the 
new version a lot, you might want to create a new .exe file, too.

	 6.	 When you’re finished, click Close Project on the File menu.

The files associated with the Lucky Seven program are closed.

Chapter 2 Quick Reference

To Do This

Create a user 
interface

Use Toolbox controls to place objects on your form, and then set the 
necessary properties. Resize the form and the objects as appropriate.

Move an object Point to the object, and when a four-headed arrow appears, drag the 
object.



	 Chapter 2  Writing Your First Program	 65

To Do This

Resize an object Click the object to select it, and then drag the resize handle attached to the 
part of the object you want to resize.

Delete an object Click the object, and then press DELETE.

Open the Code Editor Double-click an object on the form (or the form itself). 
or 
Select a form or a module in Solution Explorer, and then click the View 
Code button.

Write program code Type Visual Basic program statements associated with objects in the Code 
Editor.

Save a program On the File menu, click the Save All command. 
or 
Click the Save All button on the Standard toolbar.

Save a form file Make sure the form is open, and then, on the File menu, click the Save 
command. 
or 
Click the Save button on the Standard toolbar.

Create an .exe file On the Build menu, click the Build or Rebuild command.

Deploy an 
application by using 
ClickOnce technology

Click the Publish command on the Build menu, and then use the Publish 
wizard to specify the location and settings for the application.

Reload a project On the File menu, click the Open Project command. 
or 
On the File menu, point to Recent Projects and Solutions, and then click 
the desired project. 
or 
Click the project in the recent projects list on the Visual Studio Start Page.





		  491

Chapter 20

Creating Web Sites and Web Pages 
by Using Visual Web Developer 
and ASP.NET

After completing this chapter, you will be able to:

n	 Start Visual Web Developer and create a new Web site.

n	 Use Visual Web Developer tools and windows, including the Web Page Designer.

n	 Use the Visual Web Developer Toolbox to add server controls to Web pages.

n	 Add text, formatting effects, and Visual Basic code to a Web page that calculates loan 
payments for a car loan.

n	 Create a Web page that displays Help information.

n	 Use the HyperLink control to link one Web page to another on a Web site.

n	 Use the GridView control to display a table of database information on a Web page.

n	 Set the Title for a Web page and edit the master page.

In this chapter, you’ll learn how to build Web sites and Web pages by using the Visual Web 
Developer tool included with Microsoft Visual Studio 2010. Visual Web Developer has the 
look and feel of the Visual Studio Integrated Development Environment (IDE), but it is 
customized for Web programming and Microsoft ASP.NET 4, the Microsoft .NET Framework 
component designed to provide state-of-the-art Internet functionality. Although a complete 
description of Web programming and ASP.NET isn’t possible here, there’s enough in common 
between Web programming and Windows programming to allow you to do some useful 
experimentation—even if you have little or no experience with Hypertext Markup Language 
(HTML). Invest a few hours in this chapter, and you’ll see how quickly you can build a Web 
site that calculates loan payments for car loans, create a Web page with Help information, 
and display loan prospects from a Microsoft Access database by using the GridView control.

Inside ASP.NET
ASP.NET 4, Microsoft’s Web development platform, has been enhanced in this release. 
Some of the improvements include how Web pages are created in the Web Page Designer; 
various feature enhancements to ASP.NET Web pages and ASP.NET MVC; support for 
recently introduced browsers and handheld devices; a new ASP.NET Chart server control; 
enhancements to the FormView, ListView, and QueryExtender controls; new dynamic data 

Table of Contents

Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.
NET .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  491

Inside ASP.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                      491

Web Pages vs. Windows Forms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  493

Server Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                493

HTML Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

Building a Web Site by Using Visual  
Web Developer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     495

Considering Software Requirements  
for ASP.NET Programming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      495

Using the Web Page Designer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        498

Adding Server Controls to a Web Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  501

Writing Event Procedures for Web Page Controls  . . . . . . . . . . . . . . . . .                  504

Customizing the Web Site Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   509

Displaying Database Records on a Web Page . . . . . . . . . . . . . . . . . . . . . . . . . .                           512

One Step Further: Setting Web Site Titles  
in Internet Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  519

Chapter 20 Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          522



492	 Part IV  Database and Web Programming

controls and enhancements; and improvements to the AJAX (Asynchronous JavaScript 
and XML) programming model. Although ASP.NET has some similarities with an earlier Web 
programming technology named Active Server Pages (ASP), ASP.NET has been significantly 
enhanced since its first release in Visual Studio .NET 2002, and continues to evolve as new 
features are added to the .NET Framework and Visual Studio software. Visual Web Developer 
is the tool that you use to create and manage ASP.NET user interfaces, commonly called Web 
pages or (in a more comprehensive sense) Web sites.

Tip  In programming books about ASP.NET, you’ll sometimes see Web pages referred to as Web 
Forms and Web sites referred to as Web applications or ASP.NET applications.

By using Visual Web Developer, you can create a Web site that displays a user interface, 
processes data, and provides many of the commands and features that a standard 
application for Windows might offer. However, the Web site you create is viewed in a 
Web browser, such as Internet Explorer, Mozilla Firefox, Apple Safari, or even one of the 
new mobile device types, including Google Chrome, the Research in Motion BlackBerry 
smart phone, and the Apple iPhone. These Web sites are typically stored on one or more 
Web servers, which use Microsoft Internet Information Services (IIS) to display the correct 
Web pages and handle most of the computing tasks required by your Web site. (In Visual 
Studio 2010, Web sites can also be located and run on a local computer that does not 
require IIS, giving you more options for development and deployment.) This distributed 
strategy allows your Web sites to potentially run on a wide range of Internet-based or 
stand-alone computers—wherever your users and their rich data sources are located.

To create a Web site in Visual Studio 2010, you click the New Web Site command on the File 
menu, and then use the Visual Web Developer to build one or more Web pages that will 
collectively represent your Web site. Each Web page consists of two pieces:

n	 A Web Forms page, which contains HTML, ASP.NET markup, and controls to create the 
user interface.

n	 A code-behind file, which is a code module that contains program code that “stands 
behind” the Web Forms page.

This division is conceptually much like the Windows Forms you’ve been creating in Microsoft 
Visual Basic—there’s a UI component and a code module component. The code for both of 
these components can be stored in a single .aspx file, but typically the Web Forms page code 
is stored in an .aspx file, and the code-behind file is stored in an .aspx.vb file.

In addition to Web pages, Web sites can contain code modules (.vb files), HTML pages (.htm 
files), configuration information (Web.config files), global Web application information 
(Global.asax files), cascading style sheet (CSS) information, scripting files (JavaScript), master 



	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 493

pages, and other components. You can use the Web Page Designer and Solution Explorer to 
switch back and forth between these components quickly and efficiently.

Web Pages vs. Windows Forms
What are the important differences between Web pages and Windows Forms? To begin 
with, Web pages offer a slightly different programming paradigm than Windows Forms. 
Whereas Windows Forms use a Windows application window as the primary user interface 
for a program, a Web site presents information to the user through one or more Web pages 
with supporting program code. These pages are viewed through a Web browser, and you 
can create them by using the Web Page Designer.

Like a Windows Form, a Web page can include text, graphic images, buttons, list boxes, and 
other objects that are used to provide information, process input, or display output. However, 
the basic set of controls you use to create a Web page is not the set on the Common Controls 
tab of the Toolbox. Instead, ASP.NET Web sites must use controls on one of the tabs in the 
Visual Web Developer Toolbox, including Standard, Data, HTML, and many others. Each of 
the Visual Web Developer controls has its own unique methods, properties, and events, and 
although there are many similarities between these controls and Windows Forms controls, 
there are also several important differences. For example, the Visual Studio DataGridView 
control is called GridView in Visual Web Developer and has different properties and methods.

Many Web page controls are server controls, meaning that they run on the Web server. 
Server controls have an “asp” prefix in their tag. HTML controls (located on the HTML tab 
of the Visual Web Developer Toolbox) are client controls by default, meaning that they run 
only within the user’s browser. For now, however, you simply need to know that you can use 
server controls, HTML controls, or a combination of both in your Web site projects. As you 
gain experience in Web programming, you may want to investigate AJAX programming in 
Visual Studio, which can enhance the efficiency of your Web applications and add advanced 
user-interface elements for users.

Server Controls
Server controls are more capable than HTML controls and function in many ways like the 
Windows Forms controls. Indeed, many of the server controls have the same names as the 
Windows Forms controls and offer many of the same properties, methods, and events. In 
addition to simple controls such as Button, TextBox, and Label, more sophisticated controls 
such as Chart, FileUpload, LoginView, and RequiredFieldValidator are provided on a number 
of tabs in the Toolbox; Visual Studio 2010 has added a number of controls to the list. The 
screen shot on the following page shows a sample of the server controls in the Visual Web 
Developer Toolbox. (Dynamic Data and Reporting controls are not shown.)



494	 Part IV  Database and Web Programming

HTML Controls
The HTML controls are a set of older user interface (UI) controls that are supported by all 
Web browsers and conform closely to the early HTML standards developed for managing 
UI elements on a typical Web page. They include Button, Text, and Checkbox—useful basic 
controls for managing information on a Web page that can be represented entirely with HTML 
code. Indeed, you might recognize these controls if you’ve coded in HTML before. However, 
although they’re easy to use and have the advantage of being a “common denominator” 
for Web browsers, they’re limited by the fact that they have no ability to maintain their own 
state. (In other words, the data that they contain will be lost between views of a Web page.) 
The following screen shot shows the HTML controls offered on the HTML tab of the Toolbox 
in Visual Web Developer:



	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 495

Building a Web Site by Using Visual  
Web Developer

The best way to learn about Visual Web Developer and ASP.NET is to get some hands-on 
practice. In the exercises in this chapter, you’ll create a simple car loan calculator that 
determines monthly payments and contains an About tab that explains how the program 
works. Later in the chapter, you’ll use the GridView control to display a table of data on 
a Web page in the same Web site. You’ll begin by verifying that Visual Studio is properly 
configured for ASP.NET programming, and then you’ll create a new Web site project. Next, 
you’ll use the Web Page Designer to create a Web page with text and links on it, and you’ll 
use controls in the Visual Web Developer Toolbox to add controls to the Web page.

Considering Software Requirements  
for ASP.NET Programming
Before you can create your first ASP.NET Web site, you need to make sure your computer is 
set up properly. To perform ASP.NET programming, you need to have Visual Web Developer 
installed. Visual Web Developer is a component of Visual Studio 2010 Professional, Premium, 
and more advanced editions. You can also download Visual Web Developer 2010 Express at 
http://www.microsoft.com/express/Web/, and it contains almost all the features described in this 
chapter (I’ll point out any differences as we go). If you are using Visual Web Developer 2010 
Express, be sure to set the settings to Expert by clicking the Tools menu, clicking Settings, and 
then clicking Expert Settings. This will ensure that the steps in this chapter more closely match 
your software.

Visual Studio 2010 and Visual Web Developer include their own local Web server, so setting up 
and configuring a Web server with Microsoft Internet Information Services (IIS) and the .NET 
Framework is not required. Having a local Web server makes it easy to create and test your  
ASP.NET Web sites, and you’ll see it described below as the ASP.NET Development Server.

In Visual Studio 2010, you can create and run your Web site in one of three locations:

n	 Your own computer (via the ASP.NET Development Server)

n	 An HTTP server that contains IIS and related components

n	 An FTP site (a remote file server)

The first location is the option we’ll use in this book because it requires no additional 
hardware or software. In addition, when you develop your Web site on the local file system, 
all the Web site files are stored in one location. When you’re finished testing the application, 
you can deploy the files to a Web server of your choosing.



496	 Part IV  Database and Web Programming

Create a new Web site

	 1.	 Start Visual Studio, and then click the New Web Site command on the File menu.

Note  If you don’t see the New Web Site command on the File menu, then you don’t have 
Visual Web Developer installed. To download Visual Web Developer Express, visit  
http://www.microsoft.com/express/Web/ and follow the installation instructions.

Although you might have seen the New Web Site command before, we haven’t used it 
yet in this book. This command starts Visual Web Developer and prepares Visual Studio 
to build a Web site. You see a New Web Site dialog box similar to the following:

In this dialog box, you can select the Web site or application template, the location for 
the Web site (local file system, HTTP server, or FTP site), and the programming language 
that you want to use (Visual Basic or Microsoft Visual C#). You can also identify the 
version of the .NET Framework that you want to target with your Web application. 
(Version 4 offers the most features, but there are times that you may need to design 
specifically for platforms with an earlier version of the .NET Framework. However, Visual 
Web Developer 2010 Express does not provide the option of targeting a specific version 
of the .NET Framework.)

	 2.	 In the New Web Site dialog box, verify that Visual Basic is the selected language and 
that ASP.NET Web Site is the selected template.

	 3.	 In the Web Location list, make sure that File System is selected.

	 4.	 Type C:\Vb10sbs\MyChap20 in the File Name text box.

Although you have been specifying the folder location for projects after you have 
built the projects in this book, in Visual Web Developer, projects are saved up front. 



	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 497

The “my” prefix in the path will avoid a conflict with the solution Web site in the 
practice files (C:\Vb10sbs\Chap20) that I’ve built for you.

	 5.	 Click OK to accept your selections.

Visual Studio loads Visual Web Developer and creates a Web page (Default.aspx) to 
contain the user interface and a code-behind file (Default.aspx.vb) that will store the 
code for your Web page. 

	 6.	 If you don’t see Default.aspx open in the Web Page Designer, double-click Default.aspx 
in Solution Explorer now to open it. 

	 7.	 At the bottom of the Web Page Designer, click the Design tab.

Your screen looks something like the one shown in the following screen shot:

Unlike the Windows Forms Designer, the Web Page Designer displays the Web page in 
three possible views in the IDE, and three tabs at the bottom of the Designer (Design, 
Split, and Source) allow you to change your view of the Web page. 

The Design tab shows you approximately how your Web page will look when a Web 
browser displays it. When the Design tab is selected, a basic template page (“My  
ASP.NET Application”) appears in the Designer with the result of source-code 
formatting, and you can add controls to your Web page and adjust how objects on 
the page are arranged. 

On the Source tab, you can view and edit the HTML and ASP.NET markup that’s used to 
display the Web page in a Web browser. If you’ve used Microsoft Expression Web, you’ll 



498	 Part IV  Database and Web Programming

be familiar with these two ways of displaying a Web page and perhaps also with some 
of the HTML tags that control how Web pages are actually displayed. The Split tab 
offers a composite view of the Design and Source tabs.

A few additional differences between the Windows Forms Designer and the Web 
Page Designer are worth noting at this point. The Toolbox now contains several 
collections of controls used exclusively for Web programming. Solution Explorer also 
contains a different list of project files for the Web site you’re building, as shown in the 
following screen shot. In particular, notice the Default.aspx file in Solution Explorer; 
this file contains the UI code for the active Web page. Nested under the Default.aspx 
file, you’ll find a file named Default.aspx.vb. A configuration file named Web.config 
and a master page file named Site.master are also listed.

Note  When you close your new Web site and exit Visual Web Developer, note that you open 
the Web site again by clicking the Visual Studio File menu and then clicking the Open Web Site 
command. Web sites are not opened by using the Open Project command on the File menu.

Now you’re ready to add some text to the Web page by using the Web Page Designer.

Using the Web Page Designer
Unlike a Windows Form, a Web page can have text added directly to it when it is in the Web 
Page Designer. In Source view, the text appears within HTML and ASP.NET tags somewhat as 
it does in the Visual Studio Code Editor. In Design view, the text appears in top-to-bottom 
fashion within a grid as it does in a word processor such as Microsoft Word, and you’ll see no 
HTML. In the next exercises, you’ll type text in Design view, edit it, and then make formatting 
changes by using buttons on the Formatting toolbar. Manipulating text in this way is usually 



	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 499

much faster than adding a Label control to the Web page to contain the text. You’ll practice 
entering the text for your car loan calculator in the following exercise.

Add text in Design view

	 1.	 Click the Design tab, if it is not currently selected, to view the Web Page Designer in 
Design view.

A faint rectangle appears at the top of the Web page, near the template text 
“WELCOME TO ASP.NET.” The template text is there to show you how text appears on 
a Web Form, and where you can go to get additional information about ASP.NET. You’ll 
also notice that your Web page has Home and About tabs, which are provided for you 
as part of your default page.

	 2.	 Position your insertion point at the end of the text “WELCOME TO ASP.NET.”

A blinking I-beam appears at the end of the line.

	 3.	 Press the BACKSPACE key to remove “WELCOME TO ASP.NET,” and then type Car Loan 
Calculator.

Visual Studio displays the title of your Web page exactly as it will appear when you 
open the Web site in your browser.

	 4.	 Delete the line beginning with “To learn more about ASP.NET. . .,” and in its place, type 
the following sentence:

Enter the required information and click Calculate!

	 5.	 Delete the sentence in the template beginning with “You can also find 
documentation. . .” 

Now you’ll use the Formatting toolbar to format the title with italic formatting 
and a different color.

	 6.	 Right-click the Standard toolbar in Visual Web Developer to display the list of toolbars 
available in the IDE.

	 7.	 If you do not see a check mark next to Formatting in this list, click Formatting to add 
the Formatting toolbar.

The Formatting toolbar now appears in the IDE if it was not already visible. Notice that 
it contains a few features not usually found on a text formatting toolbar.

	 8.	 Select the text “Car Loan Calculator.”

Before you can format text in Visual Web Developer, you must select it.

	 9.	 Click the Italic button on the Formatting toolbar.

	 10.	 On the Format menu, click the Font command, click Red in the Color list box, and then 
click OK.



500	 Part IV  Database and Web Programming

Your screen looks like this:

Now, you’ll examine the HTML and ASP.NET markup for the text and formatting you entered.

View the HTML and ASP.NET markup for a Web page

	 1.	 Click the Source tab at the bottom of the Designer.

The Source tab displays the actual HTML and ASP.NET markup for your Web page. 
To see more of the markup, you might want to resize a few programming tools 
temporarily and use the document scroll bars. The markup looks like the following 
screen shot. Your markup might have some differences.



	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 501

A Web page is made up of page information, scripting code, cascading style sheet (CSS) 
information, HTML tags, ASP.NET tags, image references, objects, and text. The @ Page 
directive contains information about the language you selected when creating the Web 
application, the name of any code-behind file, and any inherited forms.

HTML and ASP.NET tags typically appear in pairs so that you can see clearly where 
a section begins and ends. For example, the <style> tag identifies the beginning of 
text formatting, and the </style> tag identifies the end. Notice that the “Car Loan 
Calculator” text appears within <em></em> tags to make the text italic. Below the 
“Car Loan Calculator” text, the second line of text you entered is displayed.

Tip  Remember that the Source tab is an actual editor, so you can change the text that you 
entered by using standard text editing techniques. If you know something about HTML 
and ASP.NET, you can add other tags and content as well.

	 2.	 Click the Design tab to display your Web page in Design view, and open the Toolbox if 
it is not visible.

Adding Server Controls to a Web Site
Now you’ll add TextBox, Label, and Button controls to the car loan calculator. Although 
these controls are located in the Visual Web Developer Toolbox, they’re very similar to the 
Windows Forms controls of the same name that you’ve used throughout this book. (I’ll 
cover a few of the important differences as they come up.) The most important thing to 
remember is that in the Web Page Designer, controls are inserted at the insertion point if you 
double-click the control name in the Toolbox. After you add the controls to the Web page, 
you’ll set property settings for the controls.

Use TextBox, Label, and Button controls

	 1.	 Display the Standard tab of the Toolbox, if it isn’t already visible.

	 2.	 Position the insertion point below the last line of text on the Web page, and then press 
ENTER to create a little blank space below the text for the controls.

Because controls are placed at the insertion point, you need to use the text editing keys 
to position the insertion point appropriately before double-clicking a control in the 
Toolbox. 

Note  By default, the Web Page Designer positions controls relative to other controls. 
This is an important difference between the Web Page Designer and the Windows Forms 
Designer. The Windows Forms Designer allows you to position controls wherever you 
like on a form. You can change the Web Page Designer so that you can position controls 
wherever you like on a Web page (called absolute positioning); however, you might get 
different behavior in different Web browsers.



502	 Part IV  Database and Web Programming

	 3.	 Double-click the TextBox control on the Standard tab of the Toolbox to create a text 
box object at the insertion point on the Web page.

Notice the asp:textbox#TextBox1 text that appears above the text box object. The “asp” 
prefix indicates that this object is an ASP.NET server control. (This text disappears when 
you run the program.)

	 4.	 Click the right side of the text box object to place the insertion point at the outside 
edge, and then press ENTER.

	 5.	 Double-click the TextBox control again to add a second text box object to the 
Web page.

	 6.	 Repeat Steps 4 and 5 to create a third text box object below the second text box.

Now you’ll use the Label control to insert labels that identify the purpose of the text 
boxes.

	 7.	 Click to the right of the first text box object to place the insertion point at the right 
edge of the text box.

	 8.	 Press the SPACEBAR key twice to add two blank spaces, and then double-click the Label 
control in the Toolbox to add a label object to the Web page.

	 9.	 Repeat Steps 7 and 8 to add label objects to the right of the second and third text boxes.

	 10.	 Click to the right of the third label object to place the insertion point to the right of the 
label, and then press ENTER.

	 11.	 Double-click the Button control to create a button object at the bottom of the Web page.

The Button control, like the TextBox and Label controls, is very similar to its Windows 
Forms counterpart. Your screen looks like this:



	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 503

Now you’ll set a few properties for the seven new controls you have created on the Web 
page. If it is not already visible, open the Properties window by pressing F4. As you set 
the properties, you’ll notice one important difference between Web pages and Windows 
Forms—the familiar Name property has been changed to ID in Visual Web Developer. 
Despite their different names, the two properties perform the same function.

	 12.	 Set the following properties for the objects on the form:

Object Property Setting

TextBox1 ID txtAmount

TextBox2 ID txtInterest

TextBox3 ID txtPayment

Label1 ID

Text

lblAmount

“Loan Amount”

Label2 ID

Text

lblInterest

“Interest Rate (for example, 0.09)”

Label3 ID

Text

lblPayment

“Monthly Payment”

Button1 ID

Text

btnCalculate

“Calculate”

Your Web page looks like this:



504	 Part IV  Database and Web Programming

Writing Event Procedures for Web Page Controls
You write default event procedures (or event handlers) for controls on a Web page by 
double-clicking the objects on the Web page and typing the necessary program code in 
the Code Editor. Although the user will see the controls on the Web page in his or her own 
Web browser, the actual code that’s executed will be located on the local test computer or 
a Web server, depending on how you configured your project for development and how it 
is eventually deployed. For example, when the user clicks a button on a Web page that is 
hosted by a Web server, the browser sends the button click event back to the server, which 
processes the event and sends a new Web page back to the browser. Although the process 
seems similar to that of Windows Forms, there’s actually a lot going on behind the scenes 
when a control is used on an ASP.NET Web page!

In the following exercise, you’ll practice creating the default event procedure for the 
btnCalculate object on the Web page.

Create the btnCalculate_Click event procedure

	 1.	 Double-click the Calculate button on the Web page.

The code-behind file (Default.aspx.vb) opens in the Code Editor, and the btnCalculate_
Click event procedure appears.

	 2.	 Type the following program code:

Dim LoanPayment As Double  

'Use Pmt function to determine payment for 36 month loan  

LoanPayment = Pmt(CDbl(txtInterest.Text) / 12, 36, CDbl(txtAmount.Text))  

txtPayment.Text = Format(Abs(LoanPayment), "$0.00")

This event procedure uses the Pmt function, a financial function that’s part of the Visual 
Basic language, to determine what the monthly payment for a car loan would be by using 
the specified interest rate (txtInterest.Text), a three-year (36-month) loan period, and the 
specified principal amount (txtAmount.Text). The result is stored in the LoanPayment 
double-precision variable, and then it is formatted with appropriate monetary formatting 
and displayed by using the txtPayment text box object on the Web page.

The two Text properties are converted from string format to double-precision format 
by using the CDbl function. The Abs (absolute value) function is used to make the 
loan payment a positive number. (Abs currently has a jagged underline in the Code 
Editor because it relies on the System.Math class, which you’ll specify next.) Why make 
the loan payment appear as a positive number? The Pmt function returns a negative 
number by default (reflecting money that’s owed), but I think negative formatting 
looks strange when it isn’t part of a balance sheet, so I’m converting it to positive.



	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 505

Notice that the program statements in the code-behind file are just regular Visual Basic 
code—the same stuff you’ve been using throughout this book. Basically, the process 
feels similar to creating a Windows application.

	 3.	 Scroll to the top of the Code Editor, and then enter the following program statement as 
the first line of the file:

Imports System.Math

As you learned in Chapter 5, “Visual Basic Variables and Formulas, and the .NET 
Framework,” the Abs function isn’t included in Visual Basic by default, but it is part of 
the System.Math class in the .NET Framework and can be more easily referenced in 
your project by the Imports statement. Web applications can make use of the .NET 
Framework class libraries just as Windows applications can.

The Code Editor looks like this:

	 4.	 Click the Save All button on the Standard toolbar.

That’s it! You’ve entered the program code necessary to run the car loan calculator and make 
your Web page interactive. Now you’ll build and run the project and see how it works. You’ll 
also learn a little bit about security settings within Internet Explorer, a topic closely related to 
Web development.

Build and view the Web site

	 1.	 Click the Start Debugging button on the Standard toolbar.

Visual Studio starts the ASP.NET Development Server, which runs ASP.NET applications 
locally (on your own computer) so that you can test this application. A status balloon 
appears at the bottom of your screen and lets you know the local Uniform Resource 



506	 Part IV  Database and Web Programming

Locator (URL) on your computer that has been established, as shown in the following 
screen shot. You’ll also see a message about debugging:

The potentially confusing Debugging Not Enabled dialog box is not a major concern. 
Visual Web Developer is just indicating that the Web.config file in your project does 
not currently allow debugging (a standard security feature). Although you can bypass 
this dialog box each time that you test the application within Visual Web Developer by 
clicking the Run Without Debugging button, I recommend that you modify the Web.
config file now.

Security Tip  Before you widely distribute or deploy a real Web site, be sure to disable 
debugging in Web.config to keep your application safe from unauthorized tampering.

	 2.	 Click OK to modify the Web.config file.

Visual Studio modifies the file, builds your Web site, and displays the opening Web 
page in Internet Explorer. 

The car loan calculator looks like the screen shot on the following page. If Internet 
Explorer does not appear, you might need to select it on the Windows taskbar.



	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 507

Security Tip  You might see the Information Bar at the top of Internet Explorer indicating 
that intranet settings are turned off by default. An intranet warning is again related to 
Internet Explorer’s design to protect you from rogue programs or unauthorized access. 
An intranet is a local network (typically a home network or small workgroup network), 
and because Visual Studio uses intranet-style addressing when you test Web sites built on 
your own computer, you’re likely to see this warning message. To suppress the warning 
temporarily, click the Information Bar and then click Don’t Show Me This Again. To remove 
intranet warnings more permanently, click the Internet Options command on the Tools 
menu of Internet Explorer, click the Security tab, and then click Local Intranet. Click the 
Sites button, and clear the check mark from Automatically Detect Intranet Network in 
the Local Intranet dialog box. However, exercise caution whenever you disable security 
warnings, as they are meant to protect you.

Now, let’s get back to testing our Web page.

	 3.	 Type 18000 in the Loan Amount text box, and then type 0.09 in the Interest Rate 
text box.

You’ll compute the monthly loan payment for an $18,000 loan at 9 percent interest for 
36 months.



508	 Part IV  Database and Web Programming

	 4.	 Click the Calculate button.

Visual Basic calculates the payment amount and displays $572.40 in the Monthly 
Payment text box. Your screen looks like this:

	 5.	 Close Internet Explorer.

You’re finished testing your Web site for now. When Internet Explorer closes, your 
program is effectively ended. As you can see, building and viewing a Web site is 
basically the same as building and running a Windows application, except that the 
Web site is executed in the browser. You can even set break points and debug your 
application just as you can in a Windows application.

Curious about installing a Web site like this on an actual Web server? The basic procedure for 
deploying Web sites is to copy the .aspx files and any necessary support files for the project 
to a properly configured virtual directory on a Web server running IIS and .NET Framework 4. 
There are a couple of ways to perform deployment in Visual Web Developer. To get started, 
click Copy Web Site on the Website menu, or click Publish Web Site on the Build menu. 
(Visual Web Developer 2010 Express does not include the Publish Web Site command.) 
For more information about your options, see “ASP.NET Deployment Content Map” in the 
Visual Studio Help documentation. To find a hosting company that can host ASP.NET Web 
applications, you can check out http://www.asp.net.



	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 509

Validating Input Fields on a Web Page
Although this Web page is useful, it runs into problems if the user forgets to enter 
a principal amount or an interest rate or specifies data in the wrong format. To make 
Web sites like this more robust, I usually add one or more validator controls that 
force users to enter input in the proper format. The validator controls are located on 
the Validation tab of the Visual Web Developer Toolbox and include controls that 
require data entry in a field (RequiredFieldValidator), require entry in the proper range 
(RangeValidator), and so on. For information on the validator controls, search the Visual 
Studio Help documentation. They are straightforward to use.

Customizing the Web Site Template
Now the fun begins! Only very simple Web sites consist of just one Web page. Using Visual 
Web Developer, you can expand your Web site quickly to include additional information and 
resources, including HTML pages, XML pages, text files, database records, Web services, login 
sessions, site maps, and more. If you want to add a Web page, you have three options:

n	 You can create a new Web page by using the HTML Page template or the Web Form 
template. You select these templates by using the Add New Item command on the 
Website menu. After you create the page, you add text and objects to the page by 
using the Web Page Designer.

n	 You can add a Web page that you have already created by using the Add Existing 
Item command on the Web site menu, and then customize the page in the Web Page 
Designer. You use this method if you want to include one or more Web pages that you 
have already created in a tool such as Expression Web. (If possible, add pages that don’t 
rely on external style sheets and resources, or you’ll need to add those items to the 
project as well.)

n	 You can use an existing Web page that is part of the Web site template that you are 
using. For example, in the Web site template that you have open now, there is an About 
Web page and various Login Web pages that you can customize and use quickly.

In the following exercise, you’ll display the About Web page supplied by the template that you 
are using, and you will customize it with some information about how the car loan calculator 
application works.

Customize the About.aspx Web page

	 1.	 Display Solution Explorer, click the About.aspx file, and click the View Designer button.

Visual Web Designer displays About.aspx in the Designer, and it displays a line of 
placeholder text (“Put content here.”).



510	 Part IV  Database and Web Programming

	 2.	 Delete the placeholder text, and then type the following information:

Car Loan Calculator

The Car Loan Calculator Web site was developed for the book Microsoft Visual 
Basic 2010 Step by Step, by Michael Halvorson (Microsoft Press, 2010). The Web 
site is best viewed using Microsoft Internet Explorer version 6.0 or later. To learn 
more about how this ADO.NET application was created, read Chapter 20 in the 
book.

Operating Instructions:

Type a loan amount, without dollar sign or commas, into the Loan Amount box. 

Type an interest rate in decimal format into the Interest Rate text box. Do not 
include the “%” sign. For example, to specify a 9% interest rate, type “0.09.” 

Note that this loan calculator assumes a three-year, 36-month payment period. 

Click the Calculate button to compute the basic monthly loan payment that does 
not include taxes or other fees.

	 3.	 Using buttons on the Formatting toolbar, add bold formatting for the headings and 
italic for the book title, as shown here:

	 4.	 Click the Save All button on the Standard toolbar to save your changes.

	 5.	 Click the Start Debugging button.

Visual Studio builds the Web site and displays it in Internet Explorer.



	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 511

	 6.	 Click the Home tab on the Web page.

Visual Studio displays the Home page for your Web site, the car loan calculator.

	 7.	 Compute another loan payment to experiment further with the loan calculator. 

If you want to test another set of numbers, try entering 20000 for the loan amount 
and 0.075 for the interest rate. The result should be $622.12.

	 8.	 Now click the About tab to view the About Web page with instructions for your 
program.

Internet Explorer displays the About page on the screen. Your browser looks something 
like this:

	 9.	 Read the text, and then click the Back button in Internet Explorer.

Just like any Web site, this one lets you click the Back and Forward buttons to jump 
from one Web page to the next.

	 10.	 Close Internet Explorer to close the Web site.

You’ve added a simple About page to your Web site, and you have experimented 
with moving from one page to the next. Pretty cool so far. Now, try something more 
sophisticated that shows how far you can take your Web site if you choose to include 
information from a database.



512	 Part IV  Database and Web Programming

Displaying Database Records on a Web Page
For many users, one of the most exciting aspects of the World Wide Web is the ability to 
access large amounts of information rapidly through a Web browser. Often, of course, the 
quantity of information that needs to be displayed on a commercial Web site far exceeds 
what a developer can realistically prepare using simple text documents. In these cases, Web 
programmers add database objects to their Web sites to display tables, fields, and records 
of database information on Web pages, and they connect the objects to a secure database 
residing on the Web server or another location.

Visual Studio 2010 makes it easy to display simple database tables on a Web site, so as 
your computing needs grow, you can use Visual Studio to process orders, handle security, 
manage complex customer information profiles, and create new database records—all 
from the Web. Importantly, Visual Web Developer delivers this power very effectively. 
For example, by using the GridView control, you can display a database table containing 
dozens or thousands of records on a Web page without any program code. You’ll see 
how this works by completing the following exercise, which adds a Web page containing 
loan contact data to the Car Loan Calculator project. If you completed the database 
programming exercises in Chapter 18, “Getting Started with ADO.NET,” and Chapter 19, 
“Data Presentation Using the DataGridView Control,” be sure to notice the similarities 
(and a few differences) between database programming in a Windows environment and 
database programming on the Web.

Add a new Web page for database information

	 1.	 Click the Add New Item command on the Website menu.

Visual Web Developer displays a list of components that you can add to your Web site.

	 2.	 Click the Web Form template, type FacultyLoanLeads.aspx in the Name text box, and 
then click Add.

Visual Web Developer adds a new Web page to your Web site. You’ll customize it with 
some text and server controls.

	 3.	 Click the Design tab to switch to Design view.

	 4.	 Enter the following text at the top of the Web page:

The following grid shows instructors who want loans and their contact phone 
numbers:

	 5.	 Press ENTER twice to add two blank lines below the text.

Remember that Web page controls are added to Web pages at the insertion point, so it 
is always important to create a few blank lines when you are preparing to add a control.

Next, you’ll display two fields from the Faculty table of the Faculty2010.accdb database by 
adding a GridView control to the Web page. GridView is similar to the DataGridView control 
you used in Chapter 19, but GridView has been optimized for use on the Web. (There are also 



	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 513

a few other differences, which you can explore by using the Properties window and Visual 
Studio Help documentation.) Note that I’m using the same Access database table I used 
in Chapters 18 and 19, so you can see how similar database programming is in Visual Web 
Developer. Many programmers also use SQL databases on their Web sites, and Visual Web 
Developer also handles that format very well.

Add a GridView control

	 1.	 With the new Web page open and the insertion point in the desired location, 
double-click the GridView control on the Data tab of the Visual Web Developer 
Toolbox.

Visual Web Developer adds a grid view object named GridView1 to the Web page. The 
grid view object currently contains placeholder information.

	 2.	 If the GridView Tasks list is not already displayed, click the GridView1 object’s smart tag 
to display the list.

	 3.	 Click the Choose Data Source arrow, and then click the <New Data Source> option.

	 4.	 Visual Web Developer displays the Data Source Configuration Wizard, a tool that you 
used in Chapters 18 and 19 to establish a connection to a database and select the 
tables and fields that will make up a dataset.

Your screen looks like this:



514	 Part IV  Database and Web Programming

	 5.	 Click the Access Database icon, type Faculty2010 in the Specify An ID For The Data 
Source box, and then click OK.

You are now prompted to specify the location of the Access database on your system. 
(This dialog box is slightly different than the one you used in Chapter 18.)

	 6.	 Type C:\Vb10sbs\Chap18\Faculty2010.accdb, and then click Next.

Note  If you get a message that says “The Microsoft.ACE.OLEDB.12.0 provider is not 
registered on the local machine,” you might not have Access 2007 or later installed. If you 
don’t have Access 2007 or later installed, you will need to download and install the 2007 
Office System Driver: Data Connectivity Components from Microsoft.com.

You are now asked to configure your data source; that is, to select the table and fields 
that you want to display on your Web page. Here, you’ll use two fields from the Faculty 
table. (Remember that in Visual Studio, database fields are often referred to as columns, 
so you’ll see the word columns used in the IDE and the following instructions.) 

	 7.	 Click the Name list box arrow, and then click Faculty. (There is probably only one or two 
database tables here, but if there are several, click the Name arrow to view them.)

	 8.	 Select the Last Name and Business Phone check boxes in the Columns list box.

Your screen looks like this:



	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 515

Through your actions here, you are creating an SQL SELECT statement that configures 
a dataset representing a portion of the Faculty2010.accdb database. You can see the 
SELECT statement at the bottom of this dialog box.

	 9.	 Click Next to see the Test Query screen.

	 10.	 Click the Test Query button to see a preview of your data.

You’ll see a preview of actual Last Name and Business Phone fields from the database. 
This data looks as expected, although if we were preparing this Web site for wider 
distribution, we would take the extra step of formatting the Business Phone column 
so that it contains standard spacing and phone number formatting.

	 11.	 Click Finish.

Visual Web Developer closes the wizard and adjusts the number of columns and 
column headers in the grid view object to match the selections that you have made. 
However, it continues to display placeholder information (“abc”) in the grid view cells.

	 12.	 With the GridView Tasks list still open, click the Auto Format command.

	 13.	 Click the Professional scheme.

The AutoFormat dialog box looks like this:

The ability to format, adjust, and preview formatting options quickly is a great feature 
of the GridView control.

	 14.	 Click OK, and then close the GridView Tasks list.

The FacultyLoanLeads.aspx Web page is complete now, and looks like the screen 
shot on the following page. (My GridView control is within a <div> tag, but yours 
might be within a <p> tag.)



516	 Part IV  Database and Web Programming

Now, you’ll add a hyperlink on the first Web page (or home page) that will display this Web 
page when the user wants to see the database table. You’ll create the hyperlink with the 
HyperLink control, which has been designed to allow users to jump from the current Web 
page to a new one with a simple mouse click.

How does the HyperLink control work? The HyperLink control is located in the Standard 
Toolbox. When you add a HyperLink control to your Web page, you set the text that will be 
displayed on the page by using the Text property, and then you specify the desired Web page 
or resource to jump to (either a URL or a local path) by using the NavigateUrl property. That’s 
all there is to it.

Add a hyperlink to the home page

	 1.	 Click the Default.aspx tab at the top of the Designer.

The home page for your Web site opens in the Designer.

	 2.	 Click to the right of the Calculate button object to place the insertion point after that 
object.



	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 517

	 3.	 Press ENTER to create space for the hyperlink object.

	 4.	 Double-click the HyperLink control on the Standard tab of the Toolbox to create 
a hyperlink object at the insertion point.

	 5.	 Select the hyperlink object, and then set the Text property of the object to “Display 
Loan Prospects.”

We’ll pretend that your users are bank loan officers (or well-informed car salespeople) 
looking to sell auto loans to university professors. Display Loan Prospects will be the 
link that they click to view the selected database records.

	 6.	 Set the ID property of the hyperlink object to “lnkProspects.”

	 7.	 Click the NavigateUrl property, and then click the ellipsis button in the second column.

The Select URL dialog box opens.

	 8.	 Click the FacultyLoanLeads.aspx file in the Contents Of Folder list box, and then 
click OK.

	 9.	 Click Save All to save your changes.

Your link is finished, and you’re ready to test the Web site and GridView control in your 
browser.

Test the final Car Loan Calculator Web site

Tip  The complete Car Loan Calculator Web site is located in the C:\Vb10sbs\Chap20\
Chap20 folder. Use the Open Web Site command on the File menu to open an existing 
Web site.

	 1.	 Click the Start Debugging button.

Visual Studio builds the Web site and displays it in Internet Explorer.

	 2.	 Enter 8000 for the loan amount and 0.08 for the interest rate, and then click Calculate.

The result is $250.69. Whenever you add to a project, it is always good to go back and 
test the original features to verify that they have not been modified inadvertently. Your 
screen looks like the screen shot on the following page.



518	 Part IV  Database and Web Programming

The new hyperlink (Display Loan Prospects) is visible at the bottom of the Web page.

	 3.	 Click Display Loan Prospects to load the database table.

Internet Explorer loads the Last Name and Business Phone fields from the Faculty2010.
accdb database into the grid view object. Your Web page looks something like this:



	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 519

The information is nicely formatted and appears useful. By default, you’ll find that the 
data in this table cannot be sorted, but you can change this option by selecting 
the Enable Sorting check box in GridView Tasks. If your database contains many rows 
(records) of information, you can select the Enable Paging check box in GridView Tasks 
to display a list of page numbers at the bottom of the Web page (like a list that you 
might see in a search engine that displays many pages of “hits” for your search).

	 4.	 Click the Back and Forward buttons in Internet Explorer.

As you learned earlier, you can jump back and forth between Web pages in your Web 
site, just as you would in any professional Web site.

	 5.	 When you’re finished experimenting, close Internet Explorer to close the Web site.

You’ve added a table of custom database information without adding any program code!

One Step Further: Setting Web Site Titles  
in Internet Explorer

Haven’t had enough yet? Here are two last Web programming tips to enhance your Web site 
and send you off on your own explorations.

You might have noticed while testing the Car Loan Calculator Web site that Internet Explorer 
displayed “Home Page” in the title bar and window tab when displaying your Web site. Your 
program also displays the very large template title “MY ASP.NET APPLICATION” at the top 
of the window. In other words, your screen looked like this:

You can customize what Internet Explorer and other browsers display in the title bar by setting 
the Title property of the DOCUMENT object for your Web page; and you can modify the 
“MY ASP.NET APPLICATION” string by editing the site master page. Give editing both values 
a try now.

Set the Title property

	 1.	 With the Default.aspx Web page open in Design view, click the DOCUMENT object in 
the Object list box at the top of the Properties window.



520	 Part IV  Database and Web Programming

Each Web page in a Web site contains a DOCUMENT object that holds important 
general settings for the Web page. However, the DOCUMENT object is not selected 
by default in the Designer, so you might not have noticed it. One of the important 
properties for the DOCUMENT object is Title, which sets the title of the current Web 
page in the browser.

	 2.	 Set the Title property to “Car Loan Calculator.”

The change does not appear on the screen, but Visual Web Developer records it internally. 
Now, change the title of your application in the site master page.

Edit the master page title

	 1.	 Click the Site.Master file in Solution Explorer, and then click the View Designer button.

Visual Studio displays the master page in the Designer. The master page is a template 
that provides default settings for your Web site and lets you adjust characteristics such 
as appearance, banner titles, menus, and links. For example, you can click smart tags 
associated with the Web site’s menu items and adjust them much as you customized 
menus in Chapter 4, “Working with Menus, Toolbars, and Dialog Boxes.”

Your screen looks like this:



	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 521

	 2.	 Delete the title “MY ASP.NET APPLICATION” and type TIME FOR A NEW CAR?

Visual Web Designer enters your new title. Now run the Web site again.

	 3.	 Click the Start Debugging button.

Visual Studio opens Internet Explorer and loads the Web site. Now a more useful title 
bar and banner message appears, as shown in the following screen shot:

Now that looks better.

	 4.	 Close Internet Explorer, and then update the Title properties for the other Web pages 
on your Web site.

	 5.	 When you’re finished experimenting with the Car Loan Calculator, save your changes 
and close Visual Studio.

Congratulations on completing the entire Microsoft Visual Basic 2010 Step by Step 
programming course! Take a few moments to flip back through this book and see all that 
you have learned. Now you’re ready for more sophisticated Visual Basic challenges and 
programming techniques. Check out the resource list in the Appendix, “Where to Go for More 
Information,” for a few ideas about continuing your learning. But take a break first—you’ve 
earned it!



522	 Part IV  Database and Web Programming

Chapter 20 Quick Reference

To Do This

Create a new ASP.NET 
Web site

Click the New Web Site command on the File menu, click the  
ASP.NET Web Site template, specify a folder location in the Web 
Location list box, and then click OK.

Switch between Design view 
and Source view in the Web 
Page Designer

Click the Source or Design tabs in the Web Page Designer. For a 
mixed view, click the Split tab.

Enter text on a Web page Click the Design tab, and then type the text you want to add.

Format text on a Web page On the page, select the text that you want to format, and then click 
a button or control on the Formatting toolbar. Additional formatting 
options are available on the Format menu.

View the HTML and ASP.NET 
markup in your Web page

Click the Source tab in the Web Page Designer.

Add controls to a Web page Display the Web page in Design view, open the Toolbox (which 
automatically contains Visual Web Developer controls), position 
the insertion point where you want to place the control on the page, 
and then double-click the control in the Toolbox.

Change the name of an 
object on a Web page

Use the Properties window to change the object’s ID property to 
a new name.

Write the default event 
procedure for an object on 
a Web page

Double-click the object to display the code-behind file, and then 
write the event procedure code for the object in the Code Editor.

Verify the format of the data 
entered by the user into 
a control on a Web page

Use one or more validator controls from the Validation tab of the 
Toolbox to test the data entered in an input control.

Run and test a Web site in 
Visual Studio

Click the Start Debugging button on the Standard toolbar. Visual 
Studio builds the project, starts the ASP.NET Development Server, 
and loads the Web site in Internet Explorer.

Create a Web page for 
a project

Click the Add New Item command on the Website menu, and then 
add a new Web Form or an HTML Page template to the project. 
Create and format the page by using the Web Page Designer.

Create a link to other Web 
pages on your Web site

Add a HyperLink control to your Web page, and then set the 
control’s NavigateUrl property to the address of the linked 
Web page.

Display database records 
on a Web page

Add a GridView control to a Web page in the Web Page Designer. 
Establish a connection to the database and format the data by using 
commands in the GridView Tasks list. (The Choose Data Source 
command starts the Data Source Configuration Wizard.)

Set the title displayed for 
Web pages on the Internet 
Explorer title bar

For each Web page, use the Properties window to set the 
DOCUMENT object’s Title property.

Adjust the banner title, 
menus, and other default 
values in the master page

Select the Site.Master file in Solution Explorer, and then click View 
Designer. Adjust the master page’s default values in the Designer.


	Cover page
	Copyright Page
	Table of Contents
	Chapter 2: Writing Your First Program
	Lucky Seven: Your First Visual Basic Program
	Programming Steps
	Creating the User Interface
	Setting the Properties
	The Picture Box Properties
	Writing the Code
	A Look at the Button1_Click Procedure
	Running Visual Basic Applications
	Sample Projects on Disk
	Building an Executable File
	Deploying Your Application
	One Step Further: Adding to a Program
	Chapter 2 Quick Reference

	Chapter 20: Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET
	Inside ASP.NET
	Web Pages vs. Windows Forms
	Server Controls
	HTML Controls

	Building a Web Site by Using Visual Web Developer
	Considering Software Requirements for ASP.NET Programming

	Using the Web Page Designer
	Adding Server Controls to a Web Site
	Writing Event Procedures for Web Page Controls

	Customizing the Web Site Template
	Displaying Database Records on a Web Page
	One Step Further: Setting Web Site Titles in Internet Explorer
	Chapter 20 Quick Reference


