
30IJARC CORE1-3 project summary booklet

Search, Versioning, and Temporal
Search for Desktops

Keishi Tajima

Kyoto University

Tajima@i.kyoto-u.ac.jp

1. Project Goal

Nowadays, many knowledge workers or even non-expert
computer users store large amount of data files on their
computers, and various functions to help users managing
those files efficiently have become an important function
of operating systems or desktop environments in order to
improve the productivity of the people in the world. Among
such functions for file management, in this research project,
we especially focus on the functions for searching for files,
and the functions for managing versions of files.

Functions for searching ones’ desktop for files, i.e., desktop
search, have already become very important features of
many operating systems. In the existing desktop search
systems, however, user can only specify keywords and
conditions on some meta data, such as file creation
time. Another useful information in desktop search is
information on structure inside data files. While in Web
search, users mainly want to find new unknown Web pages,
in desktop search, users mainly want to retrieve some file
they saw before. Therefore, fragmentary knowledge on
their structure in their memory is very useful in desktop
search. In this project, we develop a desktop search system
that allows users to specify such fragmentary information
on structure.

To retrieve files including the given structure, we need to
be able to extract structure inside various kind of data files
on the desktops. The simplest approach is to provide a
wrapper or parser for each file type, which extracts structure
in that file type into some universal format. The cost of
providing such a wrapper for every file type is, however, too
high, and such a approach can easily lead to the situation
where structural query may fail to retrieve some files of file
types that do not have their wrappers, and users hesitate to

specify structural information in their queries. To solve
this problem, one goal of this research project is to design
a framework where wrappers can be defined as easily as
possible, and users can retrieve files even when its file type
does not have its wrapper.

The second topic is the management of versions of files.
One fundamental issue in version management on desktops
is how to find files corresponding to versions of the same
file. Users know which file is a new version of which file,
but it is not desirable to have users to specify it every time
some file is newly created including files automatically
created by some software. Therefore, we need some
mechanism to automatically identify which file is a new
version of which file.

In many version management systems used for software
development, file names are keys to identify "same"
files. In the desktop environments, however, file names
are not always keys because we sometime use different
file names to represent versions of one "same" file, e.g.,
report090530.doc and report090531.doc. There are also
many unrelated files that happen to have the same file
name but in different directories. Note that there are also
files representing versions of the same file and are stored
in different directories. Many operating systems have
some form of file IDs, but those IDs cannot be keys either
because we often reuse some existing file and edit it into
another new file. The log of the user operations, such as
copy operations, is not useful for the same reason. In this
way, how to automatically identify which files are versions
of the same file is not a simple problem, and this is the
second issue to study in this project.

31 IJARC CORE1-3 project summary booklet

2. Technical breakthrough

One important observation in the structure-based file search
on the desktops is we usually do not need the complete
view of structure inside files. The users rarely remember
and want to specify the detailed structure of files they need.
They usually remember and specify only fragmentary
information. Therefore, it is not necessary to create high-
cost perfect wrappers, and simple wrappers only extracting
fragmentary important structure in the best-effort fashion
suffice in most cases.

Another observation is there is a spectrum ranging from file
types for which it is hard to write wrappers, e.g. binary file
types whose detailed format information is not disclosed,
to file types for which it is relatively easy to extract the
main structure, e.g., text-based format including clear data
delimiters, or even file types for which its perfect structural
view is available, e.g., recent XML-based office document
formats.

Based on these observations, we designed a framework
where we can easily define rules to extract structure from
various file types. In our framework, we first classify file
types into four categories:

Cat. 1: file types for which we provide wrappers that extract
a list of text,
Cat. 2: file types for which we provide wrappers that extract
a list of text and delimiters that can decompose the list into
sub-lists,
Cat. 3: file types for which we provide wrappers that extract
a list of attribute-value pairs, and
Cat. 4: file types for which we provide wrappers that extract
a labeled tree structure.

Then, given a user query which includes query keywords
and may or may not include structural information, we
transform that query to four queries each of which is for
each category above. We evaluate each of those four
queries over the files in the corresponding categories, and
then merge the four results into one final query answer set.

To implement such a framework, we designed a set
of translation rules that translate a given query into an
appropriate query for each category with preserving as
much semantics in the original query as possible in the

translated query. We omit the details, but we show an
example of the translation in Fig. 1.

For the automatic identifications of files representing
versions of the same file, we also designed a framework
where we can specify "rules" for such identification. Rules
define when we regard two files as the versions of the "same"
file. For example, we can define a rule that says if two .doc
files have filenames that match the pattern *2009????.doc
with the same "*" part, we regard them as the two versions
of the same document. Similarly, we can define a rule that
says two .eml files (storing an email message) are the same
file only if they have the same Message-ID line in their
header parts even if they have different file name and are
stored in different folders. By defining such rules for each
file type, we can have the system automatically find the
pair of files representing versions of the same file.

3. Innovative Applications

By using our framework for structural file search, users
can issue a desktop query like "date: 2008, *:Beijing",
which means files including attribute whose attribute name
includes "date" and whose value includes "2008", and also
including keyword "Beijing" somewhere. Then, our system
translate this query into four queries corresponding the four
categories as shown in Fig.1, and may retrieve email files
including the text "2008" in its date header and including
the word "Beijing" somewhere, and also retrieve any files
classified in Cat.1 that include text "date", "2008", and
"Beijing" somewhere (Fig.2). Note that we do not require
files in Cat.1 to include "date" as an attribute name because
we do not provide a wrapper that provide such information
for Cat.1 files.

Fig.1: Translation of the query “date: 2008, *: Beijing”

32IJARC CORE1-3 project summary booklet

Our framework for identifying versions of a file can be
applied to temporal desktop search systems. Suppose, we
archive the daily snapshot of whole directory structure of
some users' desktop. One day, a user want to retrieve an old
version of his file "Desktop/grant/core3/report090531.doc"
as of last Friday. Then, the system searches the snapshot of
the desktop on last Friday, and identifies the file "Desktop/
report090526.doc" is the old version of that file (Fig.3).

4. Academic Achievement

We are now implementing our proposed systems and
preparing the papers for publication.

5. Project Development

The project is on going (without a support by a particular
grant).

6. Publications

Paper publication
In preparation.

Fig.2: Automatic adaptation of structural queries to various
file type categories

Fig.3: Identification of files representing different version of
the same document

date: 2008, *: Beijing

For Cat.1 files:
date, 2008, Beijing

For Cat.3 files:
date: 2008, *: Beijing

….2008….
..Beijing….
……date…

date: ..2008..
…………….
Beijing…

files without any structure

automatic query adaptation

files with attribute structure

Where is the old version of
Desktop/core3/report20090531.doc as
of 05/28 …?

05/26 05/27 05/28 05/29 05/30 05/31

Desktop/report20090528.doc
is a version of the same file!

Daily snapshots of /Desktop

