
233

C H A P T E R 8

C# 4.0 FEATURES

Goals of this chapter:
■ Define new C# 4.0 language features.
■ Demonstrate the new language features in the context of LINQ to Objects.

C# is an evolving language. This chapter looks at the new features added
into C# 4.0 that combine to improve code readability and extend your abil-
ity to leverage LINQ to Object queries over dynamic data sources. The
examples in this chapter show how to improve the coding model for devel-
opers around reading data from various sources, including text files and
how to combine data from a COM-Interop source into a LINQ to
Objects query.

Evolution of C#

C# is still a relatively new language (circa 2000) and is benefiting from con-
tinuing investment by Microsoft’s languages team. The C# language is an
ECMA and ISO standard. (ECMA is an acronym for European Computer
Manufacturers Association, and although it changed its name to Ecma
International in 1994, it kept the name Ecma for historical reasons.1) The
standard ECMA-334 and ISO/IEC 23270:2006 is freely available online at
the Ecma International website2 and describes the language syntax and
notation. However, Microsoft’s additions to the language over several ver-
sions take some time to progress through the standards process, so
Microsoft’s release cycle leads Ecma’s acceptance by at least a version.

Each version of C# has a number of new features and generally a major
theme. The major themes have been generics and nullable types in C# 2.0,

234 Chapter 8 C# 4.0 Features

LINQ in C# 3.0, and dynamic types in C# 4.0. The major features added
in each release are generally considered to be the following:

■ C# 2.0—Generics (.NET Framework support was added, and C#
benefited from this); iterator pattern (the yield keyword); anony-
mous methods (the delegate keyword), nullable types, and the null
coalescing operator (??).

■ C# 3.0—Anonymous types, extension methods, object initializers,
collection initializers, implicitly typed local variables (var keyword),
lambda expressions (=>), and the LINQ query expression pattern.

■ C# 4.0—Optional Parameters and Named Arguments, Dynamic
typing (dynamic type), improved COM-Interop, and Contra and
Co-Variance.

The new features in C# 3.0 that launched language support for LINQ
can be found in Chapter 2, “Introducing LINQ to Objects,” and this chapter
documents each of the major new features in C# 4.0 from the perspective of
how they impact the LINQ story.

Optional Parameters and Named Arguments

A long-requested feature for C# was to allow for method parameters to be
optional. Two closely related features in C# 4.0 fulfill this role and enable
us to either omit arguments that have a defined default value when calling
a method, and to pass arguments by name rather than position when call-
ing a method.

OPTIONAL PARAMETERS OR OPTIONAL ARGUMENTS? Optional
parameters and named parameters are sometimes called optional arguments
and named arguments. These names are used interchangeably in this book, and
in most literature, including the C# 4.0 specification that uses both, sometimes in
the same section. I use “argument” when referring to a value passed in from a
method call and “parameter” when referring to the method signature.

The main benefit of these features is to improve COM-Interop pro-
gramming (which is covered shortly) and to reduce the number of method
overloads created to support a wide range of parameter overloads. It is a

Optional Parameters and Named Arguments 235

common programming pattern to have a master method signature con-
taining all parameters (with the actual implementation) chained to a num-
ber of overloaded methods that have a lesser parameter signature set call-
ing the master method with hard-coded default values. This common cod-
ing pattern becomes unnecessary when optional parameters are used in
the definition of the aforementioned master method signature, arguably
improving code readability and debugging by reducing clutter. (See Listing
8-2 for an example of the old and new way to create multiple overloads.)

There has been fierce debate on these features on various email lists
and blogs. Some C# users believe that these features are not necessary and
introduce uncertainty in versioning. For example if version 2 of an assem-
bly changes a default parameter value for a particular method, client code
that was assuming a specific default might break. This is true, but the exist-
ing chained method call pattern suffers from a similar issue—default val-
ues are coded into a library or application somewhere, so thinking about
when and how to handle these hard-coded defaults would be necessary
using either the existing chained method pattern or the new optional
parameters and named arguments. Given that optional parameters were
left out of the original C# implementation (even when the .NET Runtime
had support and VB.NET utilized this feature), we must speculate that
although this feature is unnecessary for general programming, coding COM-
Interop libraries without this feature is unpleasant and at times infuriating—
hence, optional parameters and specifying arguments by name has now
made its way into the language.

COM-Interop code has always suffered due to C#’s inability to handle
optional parameters as a concept. Many Microsoft Office Component
Object Model (COM) libraries, like those built to automate Excel or
Word for instance, have method signatures that contain 25 optional
parameters. Previously you had no choice but to pass dummy arguments
until you reached the “one” you wanted and then fill in the remaining
arguments until you had fulfilled all 25. Optional parameters and named
arguments solve this madness, making coding against COM interfaces
much easier and cleaner. The code shown in Listing 8-1 demonstrates the
before and after syntax of a simple Excel COM-Interop call to open an
Excel spreadsheet. It shows how much cleaner this type of code can be
written when using C# 4.0 versus any of its predecessors.

236 Chapter 8 C# 4.0 Features

Listing 8-1 Comparing the existing way to call COM-Interop and the new way using
optional parameters

// Old way – before optional parameters

var excel = new Microsoft.Office.Interop.Excel.Application();

try

{

Microsoft.Office.Interop.Excel.Workbook workBook =

excel.Workbooks.Open(fileName, Type.Missing,

Type.Missing, Type.Missing, Type.Missing,

Type.Missing, Type.Missing, Type.Missing,

Type.Missing, Type.Missing, Type.Missing,

Type.Missing, Type.Missing, Type.Missing,

Type.Missing);

// do work with Excel...

workBook.Close(false, fileName);

}

finally

{

excel.Quit();

}

// New Way – Using optional parameters

var excel = new Microsoft.Office.Interop.Excel.Application();

try

{

Microsoft.Office.Interop.Excel.Workbook workBook =

excel.Workbooks.Open(fileName);

// do work with Excel...

workBook.Close(false, fileName);

}

finally

{

excel.Quit();

}

The addition of object initializer functionality in C# 3.0 took over some of
the workload of having numerous constructor overloads by allowing public
properties to be set in line with a simpler constructor (avoiding having a

Optional Parameters and Named Arguments 237

constructor for every Select projection needed). Optional parameters and
named arguments offer an alternative way to simplify coding a LINQ Select
projection by allowing variations of a type’s constructor with a lesser set of
parameters. Before diving into how to use these features in LINQ queries, it
is necessary to understand the syntax and limitations of these new features.

Optional Parameters
The first new feature allows default parameters to be specified in a method
signature. Callers of methods defined with default values can omit those
arguments without having to define a specific overload matching that less-
er parameter list for convenience.

To define a default value in a method signature, you simply add a con-
stant expression as the default value to use when omitted, similar to mem-
ber initialization and constant definitions. A simple example method defi-
nition that has one mandatory parameter (p1, just like normal) and an
optional parameter definition (p2) takes the following form:

public void MyMethod(int p1, int p2 = 5);

The following invocations of method MyMethod are legal (will compile)
and are functionally equivalent as far as the compiler is concerned:

MyMethod(1, 5);

MyMethod(1); // the declared default for p2 (5) is used

The rules when defining a method signature that uses optional param-
eters are:

1. Required parameters cannot appear after any optional parameter.
2. The default specified must be a constant expression available at

compile time or a value type constructor without parameters, or
default(T) where T is a value type.

3. The constant expression must be implicitly convertible by an iden-
tity (or nullable conversion) to the type of the parameter.

4. Parameters with a ref or outmodifier cannot be optional parameters.
5. Parameter arrays (params) can occur after optional parameters,

but these cannot have a default value assigned. If the value is omit-
ted by the calling invocation, an empty parameter array is used in
either case, achieving the same results.

238 Chapter 8 C# 4.0 Features

Valid optional parameter definitions take the following form:

public void M1(string s, int i = 1) { }

public void M2(Point p = new Point()) { }

public void M3(Point p = default(Point)) { }

public void M4(int i = 1, params string[] values) { }

The following method definitions using optional parameters will not
compile:

//”Optional parameters must appear after all required parameters”

public void M1 (int i = 1, string s) {}

//”Default parameter value for ‘p’ must be a compile-time constant”

//(Can’t use a constructor that has parameters)

public void M2(Point p = new Point(0,0)) {}

//”Default parameter value for ‘p’ must be a compile-time constant”

//(Must be a value type (struct or built-in value types only))

public void M5(StringBuilder p = new StringBuilder()) {}

//”A ref or out parameter cannot have a default value”

public void M6(int i = 1, out string s = ””) {}

//”Cannot specify a default value for a parameter array”

public void M7(int i = 1, params string[] values = ”test”) {}

To understand how optional parameters reduce our code, Listing 8-2
shows a traditional overloaded method pattern and the equivalent
optional parameter code.

Listing 8-2 Comparing the traditional cascaded method overload pattern to the new
optional parameter syntax pattern

// Old way – before optional parameters

public class OldWay

{

// multiple overloads call the one master

// implementation of a method that handles all inputs

Optional Parameters and Named Arguments 239

public void DoSomething(string formatString)

{

// passing 0 as param1 default,

// and true as param2 default.

DoSomething(formatString, 0, true);

}

public void DoSomething(string formatString, int param1)

{

DoSomething(formatString, param1, true);

}

public void DoSomething(string formatString, bool param2)

{

DoSomething(formatString, 0, param2);

}

// the actual implementation. All variations call this

// method to implement the methods function.

public void DoSomething(

string formatString,

int param1,

bool param2)

{

Console.WriteLine(

String.Format(formatString, param1, param2));

}

}

// New Way – Using optional parameters

public class NewWay

{

// optional parameters have a default specified.

// optional parameters must come after normal params.

public void DoSomething(

string formatString,

int param1 = 0,

bool param2 = true)

{

Console.WriteLine(

String.Format(formatString, param1, param2));

}

}

240 Chapter 8 C# 4.0 Features

Named Arguments
Traditionally, the position of the arguments passed to a method call iden-
tified which parameter that value matched. It is possible in C# 4.0 to
specify arguments by name, in addition to position. This is helpful when
many parameters are optional and you need to target a specific parame-
ter without having to specify all proceeding optional parameters.

Methods can be called with any combination of positionally specified
and named arguments, as long as the following rules are observed:

1. If you are going to use a combination of positional and named
arguments, the positional arguments must be passed first. (They
cannot come after named arguments.)

2. All non-optional parameters must be specified somewhere in the
invocation, either by name or position.

3. If an argument is specified by position, it cannot then be specified
by name as well.

To understand the basic syntax, the following example creates a
System.Drawing.Point by using named arguments. It should be noted
that there is no constructor for this type that takes the y-size, x-size by posi-
tion—this reversal is solely because of named arguments.

// reversing the order of arguments.

Point p1 = new Point(y: 100, x: 10);

The following method invocations will not compile:

//”Named argument ‘x’ specifies a parameter for which a

// positional argument has already been given”

Point p3 = new Point(10, x: 10);

// “Named argument specifications must appear after all

// fixed arguments have been specified”

Point p4 = new Point(y: 100, 10);

// “The best overload for ‘.ctor’ does not have a

// parameter named ‘x’”

Point p5 = new Point(x: 10);

Optional Parameters and Named Arguments 241

To demonstrate how to mix and match optional parameters and named
arguments within method or constructor invocation calls, the code shown
in Listing 8-3 calls the method definition for NewWay in Listing 8-2.

Listing 8-3 Mixing and matching positional and named arguments in a method
invocation for methods that have optional and mandatory parameters

NewWay newWay = new NewWay();

// skipping an optional parameter

newWay.DoSomething(

”({0},{1}) New way - param1 skipped.”,

param2: false);

// any order, but if it doesn’t have a default

// it must be specified by name somewhere!

newWay.DoSomething(

param2: false,

formatString: ”({0},{1}) New way - params specified” +

” by name, in any order.”,

param1: 5);

Using Named Arguments and Optional Parameters
in LINQ Queries
Named arguments and optional parameters offer an alternative way to
reduce code in LINQ queries, especially regarding flexibility in what
parameters can be omitted in an object constructor.

Although anonymous types make it convenient to project the results of
a query into an object with a subset of defined properties, these anony-
mous types are scoped to the local method. To share a type across meth-
ods, types, or assemblies, a concrete type is needed, meaning the accumu-
lation of simple types or constructor methods just to hold variations of data
shape projections. Object initializers reduce this need by allowing a con-
crete type to have a constructor without parameters and public properties
used to assign values in the Select projection. Object-oriented purists take
issue with a parameterless constructor being a requirement; it can lead
to invalid objects being created by users who are unaware that certain

242 Chapter 8 C# 4.0 Features

properties must be set before an object is correctly initialized for use—an
opinion I strongly agree with. (You can’t compile using the object initial-
ization syntax unless the type concerned has a parameterless constructor,
even if there are other constructors defined that take arguments.)

Optional parameters and named arguments can fill this gap. Data can
be projected from queries into concrete types, and the author of that con-
crete type can ensure that the constructor maintains integrity by defining
the default values to use when an argument is omitted. Many online dis-
cussions have taken place discussing if this is a good pattern; one camp
thinks it doesn’t hurt code readability or maintainability to use optional
parameters in a constructor definition, and the other says refactoring
makes it an easy developer task to define the various constructors required
in a given type, and hence of no value. I see both sides of that argument
and will leave it up to you to decide where it should be employed.

To demonstrate how to use named arguments and optional parameters
from a LINQ query, the example shown in Listing 8-4 creates a subset of
contact records (in this case, contacts from California) but omits the email
and phone details. The Console output from this example is shown in
Output 8-1.

Listing 8-4 Example LINQ query showing how to use named arguments and optional
parameters to assist in projecting a lighter version of a larger type—see Output 8-1

var q = from c in Contact.SampleData()

where c.State == ”CA”

select new Contact(

c.FirstName, c.LastName,

state: c.State,

dateOfBirth: c.DateOfBirth

);

foreach (var c in q)

Console.WriteLine(”{0}, {1} ({2}) - {3}”,

c.LastName, c.FirstName,

c.DateOfBirth.ToShortDateString(), c.State);

public class Contact

{

// constructor defined with optional parameters

public Contact(

string firstName,

string lastName,

Dynamic Typing 243

DateTime dateOfBirth,

string email = ”unknown”, // optional

string phone = ””, // optional

string state = ”Other”) // optional

{

FirstName = firstName;

LastName = lastName;

DateOfBirth = dateOfBirth;

Email = email;

Phone = phone;

State = state;

}

public string FirstName { get; set; }

public string LastName { get; set; }

public string Email { get; set; }

public string Phone { get; set; }

public DateTime DateOfBirth { get; set; }

public string State { get; set; }

public static List<Contact> SampleData() ...

// sample data the same as used in Table 2-1.

}

Output 8-1

Gottshall, Barney (10/19/1945) - CA

Deane, Jeffery (12/16/1950) - CA

Dynamic Typing

The wow feature of C# 4.0 is the addition of dynamic typing. Dynamic
languages such as Python and Ruby have major followings and have
formed a reputation of being super-productive languages for building
certain types of applications.

The main difference between these languages and C# or VB.NET is
the type system and specifically when (and how) member names and
method names are resolved. C# and VB.NET require (or required, as you
will see) that static types be available during compile time and will fail if a

