

Microsoft Security Intelligence Report

Volume 11

An in-depth perspective on

software vulnerabilities and exploits,

malicious code threats, and

potentially unwanted software

in the first half of 2011

ZEROING IN ON MALWARE

PROPAGATION METHODS

2

Microsoft Security Intelligence Report
This document is for informational purposes only. MICROSOFT MAKES NO

WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS TO THE

INFORMATION IN THIS DOCUMENT.

This document is provided “as-is.” Information and views expressed in this

document, including URL and other Internet Web site references, may change

without notice. You bear the risk of using it.

Copyright © 2011 Microsoft Corporation. All rights reserved.

The names of actual companies and products mentioned herein may be the

trademarks of their respective owners.

3

Authors

Joe Faulhaber
Microsoft Malware Protection
Center

David Felstead
Bing

Paul Henry
Wadeware LLC

Jeff Jones
Microsoft Trustworthy
Computing

Ellen Cram Kowalczyk
Microsoft Trustworthy
Computing

Jimmy Kuo
Microsoft Malware Protection
Center

John Lambert
Microsoft Security
Engineering Center

Marc Lauricella
Microsoft Trustworthy
Computing

Aaron Margosis
Microsoft Public Sector
Services

Michelle Meyer
Microsoft Trustworthy
Computing

Anurag Pandit
Windows Live Safety
Platform

Anthony Penta
Windows Live Safety
Platform

Dave Probert
Microsoft Security
Engineering Center

Tim Rains
Microsoft Trustworthy
Computing

Mark E. Russinovich
Microsoft Technical Fellow

Weijuan Shi
Windows Business Group

Adam Shostack
Microsoft Trustworthy
Computing

Frank Simorjay
Microsoft Trustworthy
Computing

Hemanth Srinivasan
Microsoft Malware Protection
Center

Holly Stewart
Microsoft Malware Protection
Center

Matt Thomlinson
Microsoft Security Response
Center

Jeff Williams
Microsoft Malware Protection
Center

Scott Wu
Microsoft Malware Protection
Center

Terry Zink
Microsoft Forefront Online
Protection for Exchange

Contributors

Roger Capriotti
Windows Live Safety
Platform

Doug Cavit
Microsoft Trustworthy
Computing

CSS Japan Security
Response Team
Microsoft Japan

Dave Forstrom
Microsoft Trustworthy
Computing

Eric Foster
Windows Live Safety
Platform

Enrique Gonzalez
Microsoft Malware Protection
Center

Heather Goudey
Microsoft Malware Protection
Center

Vinny Gullotto
Microsoft Trustworthy
Computing

Satomi Hayakawa
CSS Japan Security Response
Team

Forbes Higman
Windows Live Safety
Platform

Yuhui Huang
Microsoft Malware Protection
Center

Aaron Hulett
Microsoft Malware Protection
Center

Hilda Larina Ragragio
Microsoft Malware Protection
Center

Eric Lawrence
Windows Live Safety
Platform

Ken Malcolmson
Microsoft Trustworthy
Computing

Takumi Onodera
Microsoft Premier Field
Engineering, Japan

Daryl Pecelj
Microsoft IT Information
Security and Risk
Management

Kathy Phillips
Microsoft Legal and
Corporate Affairs

Tareq Saade
Microsoft Malware Protection
Center

Richard Saunders
Microsoft Trustworthy
Computing

Jasmine Sesso
Microsoft Malware Protection
Center

Norie Tamura
CSS Japan Security Response
Team

Matt Thomlinson
Microsoft Trustworthy
Computing

Patrik Vicol
Microsoft Malware Protection
Center

Steve Wacker
Wadeware LLC

4

5

Table of Contents

Microsoft Security Intelligence Report, Volume 11 .. 6

Background ... 7

Analysis and Results ... 9

A New Method for Classifying Malware Propagation ... 9

Data Used ... 10

Analytic Methods .. 11

Results .. 14

Insights .. 16

User Interaction ... 17

Feature Abuse ... 17

Exploit Age ... 18

Zero-Day Exploits: A Supplemental Analysis .. 18

Analysis Details .. 21

The Project Broad Street Taxonomy.. 21

Using the Taxonomy .. 21

Vulnerability Subprocess .. 24

Methodology Details ... 25

Other classifications of malware.. 26

Conclusion ... 28

Call to Action .. 28

Advice to IT Professionals on Social Engineering .. 29

Organizations ... 29

Software .. 31

People .. 31

6

Microsoft Security Intelligence
Report, Volume 11

Volume 11 of the Microsoft® Security Intelligence Report (SIRv11) provides in-depth

perspectives on software vulnerabilities and exploits, malicious code threats, and

potentially unwanted software in Microsoft and third-party software. Microsoft

developed these perspectives based on detailed trend analyses over the past

several years, with a focus on the first half of 2011.

This document contains a featured intelligence section on malware propagation

methods, including data, analysis, and a taxonomy for classifying the methods that

threat families use to spread. The full report includes deep analysis of trends

found in more than 100 countries/regions around the world and offers ways to

manage risks to your organization, software, and people.

The full report, as well as previous volumes and related videos, can be

downloaded from www.microsoft.com/sir.

http://www.microsoft.com/sir

7

Background

Among the array of technical and non-technical mechanisms that malicious parties

have at their disposal for attacking computers and stealing data, the zero-day

vulnerability—a software vulnerability that is successfully exploited before the

software vendor has published a security update to address it—is especially

significant for security professionals and attackers alike. Zero-day vulnerabilities—

according to conventional wisdom, at least—cannot be effectively defended

against, and can arise at any time, leaving even security-conscious IT

administrators essentially at their mercy. Although technologies such as Data

Execution Prevention (DEP) and Address Space Layout Randomization (ASLR)

have been introduced to make it more difficult to reliably exploit software, and

processes such as the Secure Development Lifecycle (SDL) have been shown to

reduce the incidence of software vulnerabilities, zero-day vulnerabilities continue

to capture the imagination.

The zero-day vulnerability is especially alarming for consumers and IT

professionals, and for good reason—it combines fear of the unknown and an

inability to fix the vulnerability, which leaves users and administrators feeling

defenseless. It’s no surprise that zero-day vulnerabilities often receive considerable

coverage in the press when they arise, and can be treated with the utmost level of

urgency by the affected vendor and the vendors’ customers.

Despite this level of concern, there has been little measurement of the zero-day

threat in the context of the broader threat landscape. This section of the Microsoft

Security Intelligence Report presents such an analysis, along with details of the

methodology used, a discussion of the insights gained from it, and some

information about what’s been done with those insights.

This analysis approaches its subject in two ways. First, it establishes a method to

estimate how malware propagates, including the use of zero-day exploits. Second,

it measures the amount of zero-day exploitation in comparison with overall

vulnerability exploitation. In other words, what are the relative proportions of

exploitation before and after the update?

This analysis was undertaken for a number of reasons. Microsoft is always seeking

better statistics about the frequency of zero-day exploitation and the risk

8

customers face from it. Also, Microsoft frequently fields questions about zero-day

vulnerabilities from a variety of interested parties, ranging from journalists to IT

security professionals. It is important to provide timely and accurate answers for

such questions, but also help put them in perspective relative to other threats in

the greater security landscape. In a more general sense, it serves everyone—IT and

security professionals as well as consumers—to have realistic models of the way

malware spreads in today’s world. At a time when effective cooperation and

coordination of security efforts across corporate and political borders is as

important as it has ever been, it is only through an accurate shared understanding

of the threats all users face that IT and security pros can create the most effective

defense.

One important goal of this analysis is to provide security professionals with

information they can use to prioritize their concerns and effectively manage risks.

Like everyone else, IT departments face constraints of time, budget, personnel,

and resources when planning and performing their work. Having accurate, up-to-

date information about the threat landscape enables security professionals to

effectively prioritize their defenses and help keep their networks, software, and

people safe.

9

Analysis and Results

To better understand the landscape, Microsoft researchers have drawn on current

information about trends and developments in malware creation and distribution

to develop a new taxonomy for classifying malware according to the methods it

uses to spread. Applying this taxonomy to telemetry data generated by security

products has provided insights into the ways attackers distribute malware.

A New Method for Classifying Malware Propagation

The analysis presented here is in part an effort to start a conversation within the

industry about the current state of malware analysis and classification. Many of the

de facto standards that security professionals use were originally formulated when

the threat landscape was very different than it is today. These standards were

created when widespread public use of the Internet was nonexistent or very

limited, and before malware development and propagation were the domain of

professional criminals looking for illegitimate profits. Many of these standards and

beliefs evolved chaotically over a period of years, and in some cases terms were

never especially well defined. By adding new ways to classify malware and

understand how exploitation is measured, security professionals can improve the

ways they think and communicate about the threats that modern computer users

face. This analysis is not a call to throw away current approaches, but rather a new

lens that has been shown to be helpful.

10

Figure 1. Classifying malware according to propagation methods

The framework sketched in Figure 1 that classifies malware families by the

methods—both technical and non-technical—that they use to propagate was

developed as part of this analysis. In this context, propagation refers to the crucial

moment when the attacker is first running software on a computer. “Insights,”

beginning on page 16, provides an overview of this taxonomy; an in-depth

explanation begins on page 21.

As with any taxonomy, adaptation is a natural progression. As a lesson learned

from past malware categorization, this taxonomy should not be considered

definitive. On the contrary, the researchers are enthusiastic about presenting its

current form and look forward to the community dialogue that is sure to result as

it evolves.

Data Used

To apply this taxonomy to infection data, Microsoft researchers analyzed

infections reported by the Microsoft Malicious Software Removal Tool (MSRT)

during the first half of 2011. The MSRT is a free tool that Microsoft designed to

help identify and remove selected prevalent malware families from Windows–

based computers. A new version of the MSRT is released each month and

distributed through Windows® Update, Microsoft Update, and the Microsoft

Download Center.

The MSRT was selected as the data source for this exercise for several reasons:

http://www.microsoft.com/security/pc-security/malware-removal.aspx

11

 The MSRT runs on more than 600 million individual computers around the

world each month.

 The MSRT specifically targets malware families that present a severe risk to

users or are particularly prevalent.

 MSRT data represents infected computers (as opposed to infection attempts

that were blocked by real-time protection products).

 Installations of the MSRT are strongly correlated with usage of Windows

Update and Microsoft Update, the tool’s primary distribution mechanisms,

which helps provide a reasonably accurate picture of the risks faced by

computers that likely apply regular security updates.

Analytic Methods

Malware infections tend to resemble a power law distribution, as shown in Figure

2, in which a few dozen malware families account for most infections and a “long

tail” consisting of a large number of less common families account for the rest.

Figure 2. Malware families detected by the MSRT, ranked by the number of computers each family was removed from in the

second quarter of 2011 (“2Q11”)

To allow for a thorough analysis of infection methods for a significant portion of

the malware landscape, this analysis focuses on the 27 malware families detected

most often by the MSRT in the first half of 2011, which together accounted for a

12

majority of total MSRT detections. 1 To classify these malware families for analysis,

the researchers investigated the mechanisms by which each of the families has

been documented to spread, using information from the MMPC malware

encyclopedia as well as other sources. Only mechanisms used actively by each

family to spread were considered; The mechanisms used by these families were

grouped into nine separate categories. (See “Insights” beginning on page 16 for

more information about this classification scheme.)

Many families use multiple mechanisms to propagate. When malware is detected

on a computer, the actual method of infection is very difficult to determine

without performing forensic work on each computer. Therefore, to analyze

infections on hundreds of thousands of computers, some assumptions are

necessary.

To compensate for the difficulty in determining the exact propagation mechanism

used in each case, an “equal buckets” approach was used in which detections of

these families were allocated equally among each category in which they were

known to spread. For example, Win32/Conficker spreads by exploiting a

vulnerability (CVE-2008-4250, addressed by Security Bulletin MS08-067), by

taking advantage of AutoRun on both mapped drives and removable ones, and by

using a password dictionary. Using this approach, 100 Conficker infections is

translated into 25 vulnerability-related propagations and 75 in feature abuse (25

each for AutoRun USB, AutoRun network, and password brute force activity).

Families that were determined to spread via exploits were classified according to

the age of the security update addressing the vulnerability at the time of analysis:

o Zero-day. The exploit is known to have existed in the wild before the

vendor could publish a security update to address the related

vulnerability. If the exploit was zero-day at any time during the month-

long period preceding the release of the MSRT version that detected it, it

is considered a zero-day exploit for the purposes of this analysis.

o Update Available. The security update that addresses the vulnerability

was first issued less than a year before the recorded detection.

o Update Long Available. The security update that addresses the

vulnerability was first issued more than a year before the recorded

detection.

1The analysis included all malware families detected on computers at least 25,000 times. The families listed here
accounted for 83 percent of all MSRT detections for the 6-month period.

http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?Name=Win32%2fConficker
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4250
http://technet.microsoft.com/en-us/security/bulletin/ms08-067

13

For example, security bulletin MS08-067, which addressed the vulnerability

exploited by Conficker, was released in October 2008, so Conficker is now listed

in the “Update Long Available” category.

Figure 3 lists the malware families included in this analysis and shows how they

were classified.

Figure 3. Some of the top malware families detected by the MSRT in 1H11 and their propagation

methods

Family

Exploit:

Zero-

day

Exploit:

Update

Avail.

Exploit:

Update

Long

Avail.

AutoRun

(Net.)

AutoRun

(USB)

Office

Macro

Passwd.

Brute

Force

User

Inter-

action

File

Infector

Win32/Alureon

•

•

Win32/Bancos

•

Win32/Bredolab

•

Win32/Brontok

•

•

Win32/Bubnix

•

Win32/Conficker

• • •

•

Win32/Cutwail

•

Win32/Cycbot

•

•

Win32/FakeRean

•

Win32/FakeSpypro

•

Win32/FakeXPA

•

Win32/Frethog

•

•

Win32/Hamweq

•

Win32/Jeefo

•

Win32/Lethic

•

Win32/Parite

•

Win32/Pushbot

•

•

•

Win32/Ramnit

• • •

•

Win32/Randex

•

Win32/Renocide

• •

•

14

Figure 3 (continued). Some of the top malware families detected by the MSRT in 1H11 and their propagation methods

Family

Exploit:

Zero-

day

Exploit:

Update

Avail.

Exploit:

Update

Long

Avail.

AutoRun

(Net.)

AutoRun

(USB)

Office

Macro

Passwd.

Brute

Force

User

Inter-

action

File

Infector

Win32/Renos

•

Win32/Rimecud

• •

•

Win32/Sality

•

•

Win32/Taterf

• •

Win32/Vobfus

• • •

Win32/Yimfoca

•

Win32/Zbot

• •

•

Results

Figure 4 shows the results of this analysis.

Figure 4. Malware detected by the MSRT in 1H11, by means of propagation ability

 Threats that are documented as relying on user interaction to spread account

for 45 percent of attacks analyzed.

15

 More than a third of the detections that were analyzed were caused by

malicious software that misused the AutoRun feature in Windows. Analyzed

threats were split between USB AutoRun threats (26 percent of the total) and

network volume AutoRun threats (17 percent).

 About 6 percent of the MSRT detections analyzed were likely caused by

exploits. Of these, the majority had had security updates available for more

than a year at the time of detection (classified as “Update Long Available”),

with the remainder involving exploits for vulnerabilities for which security

updates had been released less than a year before detection (classified as

“Update Available”).

 File infectors, or viruses, accounted for 4 percent of detections.

 The password brute force and Office macro behaviors were each identified in

just one of the families examined in this exercise, and accounted for 2 percent

and 0.3 percent of the total, respectively.

16

Insights

The taxonomy introduced on page 9, codenamed “Broad Street,” organizes the

categories used in this exercise according to propagation behavior, as shown in

Figure 5.

Figure 5. The project Broad Street taxonomy, version 2.6

17

User Interaction

The first distinction shown in Figure 5 is between threats that require user

interaction to compromise a computer and threats that do not. Threats that

require user interaction can be further subdivided according to whether they

require deception, and whether they require the user to make an explicit decision

to install software. (An example of a mechanism that requires user interaction but

not deception would be an opt-in botnet, such as Java/Loic; see page 22 for more

information.)

A typical example of a user interaction that isn’t considered an installation

decision would be a user following a hyperlink on a webpage or in an email

message that leads to a page that attempts to use browser vulnerabilities to install

malware.

Feature Abuse

Among threats that don’t require user interaction, another fundamental distinction

exists between threats that exploit vulnerabilities in software and threats that

don’t. The latter group includes file infecting viruses and threats that misuse

legitimate features or functionality for malicious purposes.

Detections of threats that abuse features—including AutoRun threats, malicious

scripts and macros, viruses, and password cracking—are increasing; the project

Broad Street analysis attributes almost two-thirds of MSRT detections in 1H11 to a

variety of feature abuses. This increase may be caused in part by an increase in the

detection of threats that take advantage of the AutoRun feature in Windows. These

threats spread by creating or modifying the autorun.inf file on mounted volumes

in an effort to cause the computer to execute a malicious program whenever the

volume is connected. Some of these threat families display an extra “Open folder

to view files” entry in the AutoPlay dialog that appears by default in some versions

of Windows when a network or removable volume is connected. Selecting this

option would install the malware.

Microsoft introduced a change in the way the AutoRun feature works in Windows

7 and Windows Server® 2008 R2 in an effort to help protect users from such

threats. In these versions of Windows, the AutoRun task is disabled for all

volumes except optical drives such as CD-ROM and DVD-ROM drives, which

have historically not been used to transmit AutoRun malware. In November 2009,

Microsoft published a set of updates to the Microsoft Download Center that back-

ported this change to Windows XP, Windows Server 2003, Windows Vista®, and

http://www.microsoft.com/security/portal/Threat/Encyclopedia/Search.aspx?query=Java/Loic

18

Windows Server 2008. As a result of data obtained through this exercise, these

updates have been published as important updates through the Windows Update

and Microsoft Update services since February 2011, and have been installed by

more than 500 million computers since then.

The publication of these updates on Windows Update has had a significant effect

on the ability of malware to use AutoRun to replicate. Between January and May of

2011, the MSRT reported decreases in detections of AutoRun-abusing families of

between 62 and 82 percent on supported versions of Windows XP and Windows

Vista. For more information, see the entry “Autorun-abusing malware (Where are

they now?)” (June 14, 2011) in the Microsoft Malware Protection Center (MMPC)

blog at blogs.technet.com/mmpc.

Exploit Age

When compared to the other categories of threats identified for the project Broad

Street analysis, exploits are relatively rare, and exploits that target recently

disclosed vulnerabilities are rarer still. Of the attacks attributed to exploits in the

1H11 MSRT data, less than half of them targeted vulnerabilities disclosed within

the previous year, and none targeted vulnerabilities that were zero-day during the

first half of 2011. (Because Microsoft usually releases security updates and the

MSRT at the same time, the analysis considers a vulnerability zero-day for the

entire month that an update is released. For example, if a malware family only

uses a particular exploit in January, and Microsoft releases an update to fix the

vulnerability in January, all February cleans of that family are counted as zero-day.

This choice was made to avoid under-counting zero-days.)

Zero-Day Exploits: A Supplemental Analysis

However, if one considers exploits that are not associated with families detected

by the MSRT, a small number of vulnerabilities did have zero-day exploits in

1H11. To assess the impact of these zero-day exploits compared to exploits of

vulnerabilities for which security updates were available, the researchers

conducted a supplemental analysis that used data from all Microsoft security

products. (See Appendix B in the full report for more information about the

products and services that provided data for this report.)

The MMPC tracks vulnerability exploitation attempts using more than 3,000

signatures. Although some generic signatures may detect a zero-day exploit before

the vulnerability has been disclosed, in most cases a signature update is required

to detect or to single out one vulnerability exploit from another. Given these

http://blogs.technet.com/b/mmpc/archive/2011/06/14/autorun-abusing-malware-where-are-they-now.aspx
http://blogs.technet.com/b/mmpc/archive/2011/06/14/autorun-abusing-malware-where-are-they-now.aspx

19

constraints, some small-scale, targeted attacks using zero-day exploits may escape

detection briefly, and such attacks would not be reflected in the data presented

here. In general, though, when attacks involving an undisclosed vulnerability

occur in significant volume, they are noticed quickly; security vendors respond by

providing detection signatures and protection, and the affected software vendor

publishes security updates to address the vulnerability.

In this supplemental analysis, zero-day exploitation accounted for about 0.12

percent of all exploit activity in 1H11, reaching a peak of 0.37 percent in June.

Two vulnerabilities accounted for the bulk of zero-day exploit activity: CVE-2011-

0611, disclosed in April 2011, and CVE-2011-2110, disclosed in June 2011. Both

vulnerabilities affect Adobe Flash Player. (See the full report for more information

about these two exploits.)

In the case of CVE-2011-0611, Adobe Systems released Security Bulletin APSB11-

07 for Adobe Flash Player on April 15, 2011, less than a week after the first

reports of public exploitation. Security Bulletin APSB11-08 for Adobe Reader and

Adobe Acrobat was released the following week, on April 21, to address exploits

involving malicious Flash files embedded in PDF documents. (Exploits using the

PDF vector were only detected in a handful of samples before April 21, and the

first real surge of activity using PDFs did not occur until May 13, a few weeks after

the update had been released.)

Figure 6. Detections of exploits targeting CVE-2011-0611, April–July, 2011

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0611
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0611
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2110
http://www.adobe.com/support/security/bulletins/apsb11-07.html
http://www.adobe.com/support/security/bulletins/apsb11-07.html
http://www.adobe.com/support/security/bulletins/apsb11-08.html

20

For CVE-2011-2110, Adobe released an update on June 14, 2011 in response to

to targeted attacks that were reported to have been occurring since around June 9.

The MMPC received its first exploit sample on June 12, two days before the

release of the update. Microsoft released a generic signature,

Exploit:SWF/ShellCode.A (subsequently redesignated Exploit:SWF/CVE-2011-

2110.A), on June 17 to detect and remove the exploit.

Figure 7. Detections of exploits targeting CVE-2011-2110, June–August, 2011

In total, an estimated 0.04 percent of the CVE-2011-0611 attacks and 8.9 percent

of the CVE-2011-2110 attacks came before the applicable security updates were

released.

http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?Name=Exploit:SWF/CVE-2011-2110.A
http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?Name=Exploit:SWF/CVE-2011-2110.A

21

Analysis Details

The Project Broad Street Taxonomy

The following analysis uses a new taxonomy that was designed to classify

propagation vectors. To create the taxonomy, researchers examined the

documented propagation methods used by each of the malware families studied in

the analysis. Successful malware propagation reflects a failure of the defensive

systems that are in place to prevent attacks; consequently, focusing on means of

propagation can help security professionals hone their defenses.2

The taxonomy focuses on built-in malware propagation methods. The goal is to

assess what percentage of malware succeeds by taking advantage of each vector to

provide actionable data to the industry about what can be done to make it harder

for malware to succeed using that vector in the future.

Using the Taxonomy

Figure 8 is a reprint of the project Broad Street taxonomy, first shown in Figure 5.

The question boxes (diamonds) are numbered to make it easier to reference them

in the text.

2 This analysis intentionally focuses on propagation from computer to computer, rather than on malware
distribution. File infection propagation from computer to computer occurs via shared or removable drives.

22

Figure 8. The project Broad Street taxonomy

User interaction required? (question 1) The first question the taxonomy poses

is whether the user has to perform some action that results in a compromise. If the

answer is Yes, the flow proceeds to question 2; if No, question 2 is skipped and

the flow proceeds to question 4.

Deception? (2) The second question is one of deception. Deception often entails

convincing someone that they will get some benefit from the action, or suffer

some penalty if they don’t do it, using any of a variety of social engineering

techniques. Examples of deception might include a website telling people that

they need to install a codec to watch a video, or an email message that claims to be

from the tax authorities.

In some cases, users choose to install software that is designed to perform

malicious actions. This classification includes scenarios involving opt-in botnets,

in which the user chooses to give partial control of the computer to another party,

who intends to use it to conduct activities such as denial-of-service (DoS) attacks.

This category includes Flooder:Java/Loic, an open-source network attack tool

designed to perform DoS attacks. Decentralized groups of protesters or vigilantes

sometimes distribute software such as Java/Loic to users who wish to participate in

DoS attacks on specific political or commercial targets.

If propagation requires deceiving the user, the flow proceeds to question 3. If it

doesn’t, question 3 is skipped and the flow proceeds to question 4.

http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?Name=Flooder:Java/Loic

23

User intent to run? (3) If user interaction is required, is the user aware that the

action they are taking will involve running or installing software? If the answer is

Yes, the flow terminates in an endpoint:

 User runs/installs software with extra functionality. The user runs the

software, which performs malicious actions in addition to or instead of the

software’s desired function. A significant overlap exists between this kind of

threat and the traditional definitions of “Trojan Horse” software. The analogy

with the Trojan Horse from Greek mythology refers to the way many trojans

gain access to victims’ computers by masquerading as something innocuous:

malicious executables represented as installers for legitimate security

programs, for example, or disguised as documents for common desktop

applications. In modern usage, however, most security vendors define trojan

simply as a program that is unable to spread of its own accord. To avoid

confusion, therefore, this analysis avoids use of the “trojan” or “Trojan Horse”

labels.

If the answer is No, the flow proceeds to question 4.

Method deserves a CVE? (4) This question is the same for all three branches of

the process flow, and determines whether or not a vulnerability is involved.

Because the term “vulnerability” can be open to interpretation, the question asks

whether the method used to install the software deserves to be documented in the

Common Vulnerabilities and Exposures list (CVE), a standardized repository of

vulnerability information maintained at cve.mitre.org. (“Deserves” is used for

situations in which the method meets the CVE criteria but has not yet been

assigned a CVE number, as with a previously undisclosed vulnerability.)

If the answer is Yes, the flow continues in the vulnerability subprocess, which is

documented on page 24.

If the answer is No and user interaction is required to install or run the software,

the flow terminates in one of two endpoints, depending on whether deception is

involved:

 User tricked into running software. This result indicates a “false badging,”

such as a malicious executable named “document.pdf.exe” with an icon

similar or identical to the one used for PDF files in Adobe Reader. The user

launches the executable, believing it to be an ordinary PDF file, and it installs

malware or takes other malicious actions.

 Opt-in botnet. This result indicates that the user has voluntarily installed

botnet software.

http://cve.mitre.org/

24

If the answer is No and user interaction is not required to install or run the

software, the flow proceeds to question 5.

Configuration available? (5) Can the attack vector be eliminated through

configuration changes, or does it involve intrinsic product features that cannot be

disabled through configuration? Configuration options would include things like

turning the firewall off, and using a registry change to disable the AutoRun

feature.

If the answer is Yes—in other words, if the attack vector can be eliminated

through configuration changes—the flow terminates in one of three endpoints:

 AutoRun (USB/removable). The threat takes advantage of the AutoRun

feature in Windows to propagate on USB storage devices and other removable

volumes, as described on page 17.

 AutoRun (network/mapped drive). The threat takes advantage of the

AutoRun feature to propagate via network volumes mapped to drive letters.

 Office Macros. The threat propagates on new computers when users open

Microsoft Office documents with malicious Visual Basic® for Applications

(VBA) macros.

Feature abuse: (5a) If the answer is No—in other words, if the attack vector uses

product features that cannot be turned off via a configuration option—it is

considered feature abuse, and the flow terminates in one of three endpoints:

 File infecting viruses. The threat spreads by modifying files, often with .exe

or .scr extensions, by rewriting or overwriting some code segments. To spread

between computers, the virus writes to network drives or removable drives.

 Password brute force. The threat spreads by attempting brute force password

attacks on available volumes to obtain Write or Execute permissions, as with

the net use command.

A note on “other”: All taxonomies include either implied or explicit “other” or

“unclassified” elements. For simplicity, these are not shown, but one could

imagine classifying a threat as “other feature abuse,” “other configuration issue,” or

“other ways a user is deceived.”

Vulnerability Subprocess

If the answer to question 4 is Yes—if the method used to install the software has

or deserves a CVE entry—the attack is considered an exploit, and the process flow

continues in a subprocess, shown in extended form in Figure 9.

25

Figure 9. The extended vulnerability subprocess of the project Broad Street taxonomy

The first question in the subprocess asks whether the vulnerability affects

commercial software or custom software. Vulnerabilities are not unique to

commercial software, and other exploit analyses have found that vulnerabilities in

custom software, such as website code, account for a significant percentage of

exploitation. Exploits of custom software are classified according to whether the

vulnerability involved was known to the developers before the attack, or was

discovered by the attacker.3

If the vulnerability affects commercial software, the flow terminates in one of three

endpoints, according to the amount of time that has elapsed since the release of a

security update addressing the vulnerability:

 Zero-day. The vendor had not released a security update to address the

vulnerability at the time of the attack.

 Update available. The vendor released a security update that addressed the

vulnerability less than a year before the attack.

 Update long available. The vendor released a security update that addressed

the vulnerability more than a year before the attack.

Methodology Details

The project Broad Street analysis focuses on successful malware installs. Many

other analyses are focused on attacks. Sometimes, attacks that are seen more often

will seem more successful, but that may or may not be accurate.

3 The researchers would like to thank the Verizon RISK team for pointing out this extension to the approach.

26

One might object that only examining computers that are regularly updated

would naturally tend to reduce exploit detections of all kinds. In fact, that is a key

point: Regularly installing security updates is one of the most fundamental steps

that IT departments and individual users can take to reduce their risk from

malicious software. IT departments and individual users who are concerned about

security—a group that is presumed to include most of those reading this report—

are likely to regularly install security updates from Microsoft and other vendors,

and to face less risk from older exploits as a result. The project Broad Street

analysis, therefore, examines the residual risk faced by hundreds of millions of

computers that are already being kept up to date.

Although the MSRT only detects a subset of the malware families recognized by

Microsoft antimalware solutions, malware that propagates via exploits, such as

“traditional” worms, do not seem to be underrepresented in this subset. Most of

the prevalent malware families not detected by the MSRT are adware and other

potentially unwanted software families, as shown in Figure 10.

Figure 10. The most commonly detected malware families not detected by the MSRT in 2Q11

Family Security Intelligence Report Category

1 Win32/Hotbar Adware

2 JS/Pornpop Adware

3 Win32/Autorun Worms

4 Win32/OpenCandy Adware

5 Win32/ShopperReports Adware

6 Win32/Keygen Miscellaneous Potentially Unwanted Software

7 Win32/ClickPotato Adware

8 Win32/Zwangi Miscellaneous Potentially Unwanted Software

9 Win32/Obfuscator Miscellaneous Potentially Unwanted Software

10 Win32/OfferBox Adware

Although malware can be distributed by vectors that are extrinsic to the malware,

this analysis focuses on the documented ways in which specific forms of malware

are installed.

Other classifications of malware

Other malware classification systems use some terms that this malware taxonomy

does not, including:

27

 Drive-by download. This term refers to exploits that target vulnerabilities in

web browsers, which can lead to computers becoming compromised if users

simply browse to the malicious site. The project Broad Street taxonomy

presented here does not use this term; it classifies all exploits according to

whether a security update that addresses the vulnerability is available and how

long ago it was released.

 Exploit kit. Exploit kits are collections of exploits that usually target web

browsers and plugins in the form of packages that can be deployed on a web

server. Project Broad Street sees exploit kits as collections of attacks that

exploit vulnerabilities.

 Pay per install. This term is used to identify malware that is distributed by

other malware as part of an affiliate scheme. This taxonomy is focused on the

initial compromise, and does not take economic arrangements into

consideration.

 Bluetooth. Some security software vendors highlight malware that uses

Bluetooth wireless connections to propagate. Analysis of Bluetooth as a

propagation mechanism is out of scope for this project, but it seems likely that

use of this vector would be classified as either social engineering or exploits,

or potentially a new part of the taxonomy.

28

Conclusion

The intent of this analysis is not to downplay the risks posed by zero-day

vulnerabilities, or to encourage software vendors and others to “let their guard

down” against them. Rather, it is to provide security professionals with

information they can use to prioritize their concerns and respond effectively to

threats. Like everyone else, IT departments face constraints of resources such as

time, budget, and personnel when planning and performing their work. Having

accurate, up-to-date information about the threat landscape is vitally important to

security professionals who seek to effectively prioritize their defenses and keep

their organizations safe.

Call to Action

 Security professionals, including antivirus/antimalware vendors,

penetration testers, incident response analysts, and others can use the

project Broad Street taxonomy to talk more clearly about how computers

are compromised.

 Test and deploy security updates from all software vendors as quickly as

possible. See the Microsoft Security Update Guide, available from the

Microsoft Download Center, for guidance and recommendations.

 Ensure that your development team is using the Security Development

Lifecycle (SDL) (www.microsoft.com/sdl) or a similar software security

assurance process. Using such a methodology can help reduce the number

of vulnerabilities in software and help manage vulnerabilities that might

be found after deployment.

 Build your defenses against social engineering.

http://www.microsoft.com/download/en/details.aspx?id=559
http://www.microsoft.com/sdl

29

Advice to IT Professionals on
Social Engineering

IT professionals are accustomed to thinking about the technical aspects of

security. However, as this report has shown, the human element—the techniques

that attackers use to trick typical users into helping them—has become just as

important for attackers as the technical element, if not more so. By implementing

effective technical safeguards, programs, and processes designed to defend against

social engineering, you can help your users avoid being taken advantage of by

attackers. You can even enlist them as some of your most valuable assets in the

fight against security threats.

Organizations

Your network provides the underlying infrastructure in which your applications

are deployed. It is important to secure your network as a vital component of your

defense-in-depth strategy.

Minimize and Monitor Your Attack Surface

 Limit the number of powerful user accounts in your organization and the

level of access they have, because this will help limit the harm a successful

social engineering attack can cause.

 Regularly audit your powerful user accounts. Provide them only to those

who must have access, and to the specific resources to which they need

access.

 Ensure these user accounts have strong authentication (strong passwords

and/or two-factor authentication).

 Regularly audit attempts to access sensitive company information—both

failed and successful attempts.

30

Create a Social Engineering Incident Response Plan

 Put in place systems to detect and investigate potential social engineering

attacks.

 Create a virtual team to respond to attacks, and consider the following

areas:

o What was or is being attacked, and how.

o Which resources are threatened or compromised.

o How to shut down an ongoing attack with the least amount of

disruption to the business.

o How to recover from the attack.

o How to implement protections against similar attacks.

Create a Plan For Addressing Social Engineering In Your Organization

 Determine which threats have the greatest potential:

o Determine the resources attackers are most likely to pursue and those

most critical to the business.

o Analyze attacks that have occurred against your organization and

those like it.

o Determine where technology, policies, or company culture creates

“soft spots” that are especially vulnerable to social engineering attacks.

 Determine how to address these vulnerable areas:

o Determine where technology or processes can be altered to reduce or

eliminate the threats.

o Create policies that make it easy for people to perform secure actions

without feeling rude.

o Create awareness training for those vulnerable areas that are most

critical, and where technology, process, and policy may not address

31

the problem sufficiently. Ensure that your guidance fits well within

your organizational culture; it should be:

 Realistic. Guidance should enable typical people to accomplish

their goals without inconveniencing them.

 Durable. Guidance should remain true and relevant, and not be

easy for an attacker to use against your people.

 Memorable. Guidance should stick with people, and should be

easy to recall when necessary.

 Proven Effective. Guidance should be tested and shown to

actually help prevent social engineering attacks.

 Concise and Consistent. The amount of guidance you provide

should be minimal, be stated simply, and be consistent within all

the contexts in which you provide it.

o More details on how to create a process around social engineering

prevention and response can be found in “How to Protect Insiders

from Social Engineering Threats” on Microsoft TechNet.

Software

Many social engineering attacks involve tricking the user into opening a malicious

file or browsing to a malicious website that takes advantage of a code

vulnerability. As the data presented in this report shows, in many cases these

attacks use vulnerabilities for which a security update has already been made

available—sometimes quite a while ago. One of the most important things you

can do to blunt social engineering attacks is to keep software as up-to-date as

possible. The Microsoft Security Update Guide, Second Edition, available from the

Microsoft Download Center, provides guidance on how to deliver updates to your

users in a timely and effective manner, in consideration of all of the other

challenges in your IT environment.

People

Information security awareness and training are critical for any organization’s

information security strategy and for supporting security operations.

http://technet.microsoft.com/library/cc875841.aspx
http://technet.microsoft.com/library/cc875841.aspx
http://www.microsoft.com/download/en/details.aspx?id=559

32

In many scenarios, people are an organization’s last line of defense against threats

such as malicious code, disgruntled employees, and malicious third parties. It is

therefore important to educate workers on what your organization considers

appropriate security-conscious behavior, and on the security best practices they

need to incorporate in their daily business activities.

Drive Awareness and Train Your Organization

 Use creative ways to help your people understand the threat that social

engineering imposes, the skill with which attacks are carried out, their

role in protecting the organization, and the advice that will enable them to

resist these attacks.

 Provide a regular rhythm of updated information and refresher courses to

keep employees aware of the risks involved in relaxing security.

 Keep the message fresh so people don’t lose sight of its meaning and

importance.

Encourage the Behavior You Want and Enforce Where Necessary

 Many social engineering attacks take advantage of the positive qualities of

people and social norms. Find ways to encourage behavior that allows for

questioning of why someone needs information or access, such that it

becomes socially acceptable to push back or say “No.”

 When enforcement is necessary, set policies to require realistic safe

behavior. Ensure that users understand why such measures are necessary

to protect the organization as well as the consequences of not following

the policy.

One Microsoft Way

Redmond, WA 98052-6399

microsoft.com/security

