
COLUMNS
Cutting Edge
Predictive Fetch with jQuery
and the ASP.NET Ajax Library
Dino Esposito page 10

Going Places
Gesture Magic
Marcus Perryman page 18

CLR Inside Out
Formatting and Parsing Time
Intervals in the .NET Framework 4
Ron Petrusha page 24

UI Frontiers
Sound Generation in
WPF Applications
Charles Petzold page 76

Security Briefs
Security Compliance in
WPF Applications
Brad Hill page 80

Test Run
WCF Service Testing with Sockets
Dr. James McCaffrey page 84

Don’t Get Me Started
Let Humans Be Humans
David S. Platt page 88

Writing and Testing VPL Services for Serial Communication
Trevor Taylor page 42

Creating Interactive Bing Maps with Silverlight and IronRuby
Ashish Ghoda page 49

Windows Azure Platform for Enterprises
Hanu Kommalapati page 58

FE
BR

U
A

RY
 2

01
0

VO
L

25
 N

O
 2

Extending the MVP Pattern to Simplify UI Architecture
Zhe Ma page 70

Building Composable Apps in .NET 4 with the
Managed Extensibility Framework
Glenn Block page 32

Untitled-2 2 1/11/10 11:14 AM

http://www.infragistics.com/killerapps

Infuse your team with the power to create user interfaces
with extreme functionality, complete usability and the

“wow-factor!” with NetAdvantage® in your .NET development
toolbox. Featuring the most powerful and fastest data grids on
the market for Windows Forms, ASP.NET, Silverlight and WPF,

it’ll be like having the strength of 10 developers on every desktop.
Go to infragistics.com/killerapps to find out how you and your

team can start creating your own Killer Apps.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055

Infragistics India +91-80-6785-1111

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

Untitled-2 3 1/11/10 11:14 AM

http://www.infragistics.com/killerapps

www.syncfusion.com 1 888-9DOTNET

Project1 10/29/09 3:02 PM Page 1

http://www.syncfusion.com

What does your grid do?
Although many grids share basic features, only Syncfusion’s WPF grid has
the power and performance to set your application apart. Our grid builds
on years of Syncfusion’s expertise with high-performance scenarios.

Syncfusion Essential Grid WPF is the fastest WPF grid on the market.

Experience it for yourself at
www.syncfusion.com/wpf-gridperformance

Support for billions of rows

Unmatched scrolling performance with large data sets

Wide variety of styling options

•

•

•

ET ASP.NET MVC ASP.NET Windows Forms Back Offi ce Silverlight WPF Business Intelligence

Project1 10/29/09 3:03 PM Page 2

http://www.syncfusion.com/wpf-gridperformance

LUCINDA ROWLEY Director
DIEGO DAGUM Editorial Director
KERI GRASSL Site Manager

KEITH WARD Editor in Chief
TERRENCE DORSEY Technical Editor
DAVID RAMEL Features Editor
WENDY GONCHAR Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director
ALAN TAO Senior Graphic Designer

CONTRIBUTING EDITORS Scott Allen, Dino Esposito, Julie Lerman, Juval Lowy,
Dr. James McCaffrey, Ted Neward, Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President
Christopher M. Coates Vice President, Finance & Administration
Abraham M. Langer Vice President, Digital Media, Audience Marketing
Erik A. Lindgren Vice President, Information Technology & Web Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in U.S. funds: U.S. $35; Canada $45;
International $60. Single copies/back issues: U.S. $10, all others $12. Send orders with payment
to: MSDN Magazine, P.O. Box 3167, Carol Stream, IL 60132, e-mail MSDNmag@1105service.com or
call 847-763-9560. POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 1081, Skokie,
IL 60076-8081. Canada Publications Mail Agreement No: 40612608. Return Undeliverable Canadian
Addresses to Circulation Dept. or Bleuchip International, P.O. Box 25542, London, ON N6C 6B2.

© Copyright 2010 by 1105 Media, Inc. All rights reserved. Printed in the U.S.A. Reproductions in whole
or part prohibited except by written permission. Mail requests to “Permissions Editor,” c/o MSDN
Magazine, 16261 Laguna Canyon Road, Ste. 130, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

FEBRUARY 2010 VOLUME 25 NUMBER 2

Printed in the USA

� 25+ full-text
and fielded
data search
options (with
Unicode
support for
hundreds of
international
languages)

� Built-in file
parsers /
converters
highlight hits
in popular
file types

� Spider
supports
static and
dynamic
web data;
highlights
hits with
links,
formatting
and images
intact

� API supports .NET, C++, Java, SQL, etc.
.NET Spider API

Fully-Functional Evaluations

The Smart Choice for Text Retrieval®

since 1991

1-800-IT-FINDS • www.dtsearch.com

Instantly Search
Terabytes of Text

Network with Spider

Web with Spider

Desktop with Spider

Network with Spider

Web with Spider
Publish (portable media)
Publish (portable media)

Desktop with Spider

Engine for Linux
Engine for Linux

includes

64-bit
Engine for Win & .NET
Engine for Win & .NET

“Bottom line: dtSearch manages a terabyte
of text in a single index and returns results
in less than a second” — InfoWorld

dtSearch “covers all data sources …
powerful Web-based engines” — eWEEK

“Lightning fast ... performance was
unmatched by any other product”
— Redmond Magazine

See www.dtsearch.com for hundreds
more reviews, and hundreds of developer
case studies

Masthead.0210.lay3_4.indd 4 1/15/10 11:26 AM

mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
http://www.dtsearch.com

programmersparadise.com866-719-1528

Your best source for
software development tools!

Prices subject to change. Not responsible for typographical errors.

®

programmers.com/theimagingsource

Download a demo today.

NEW
RELEASE!

Professional Edition
Paradise #

T79 02101A02
$848.99

programmers.com/ca

CA ERwin® Data Modeler
r7.3 – Product Plus 1 Year
Enterprise Maintenance
CA ERwin Data Modeler is a data modeling
solution that enables you to create and
maintain databases, data warehouses
and enterprise data resource models.
These models help you visualize data
structures so that you can effectively
organize, manage and moderate data
complexities, database technologies and
the deployment environment.

• .NET WinForms control for VB.NET and C#
• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats DOCX, DOC, RTF, HTML, XML, TXT
• PDF and PDF/A export, PDF text import
• Tables, headers & footers, text frames, bullets,

structured numbered lists, multiple undo/redo,
sections, merge fields, columns

• Ready-to-use toolbars and dialog boxes

TX Text Control 15.1
Word Processing Components
TX Text Control is royalty-free,
robust and powerful word processing
software in reusable component form.

programmers.com/pragma

Pragma Fortress SSH—SSH
Server & Client for Windows
by Pragma Systems
Contains SSH, SFTP, SCP servers and clients
for Windows.
• Certified for Windows Server 2008R2
• Compatible with Windows 7
• High-performance servers with

centralized management
• Active Directory & GSSAPI authentication
• Supports over 1000 sessions
• Offers FIPS mode
• Hyper-V and PowerShell support
• Runs in Windows 2008R2/2008/2003/7/

Vista/XP/2000

Paradise #
P35 04201A01
$550.99

Paradise #
P26 04201E01
$3,951.99

programmers.com/unify

Unify SQLBase
Embedded Database
by Unify
SQLBase is an easy to deploy database
for building desktop and Web applications
in server environments without a DBA.

• Small footprint
• Zero admin deployment
• GUI admin
• Embed it and forget it

For applications with encrypted security,
we offer SQLBase Treasury.

Reduce your database costs and simplify
maintenance with Unify SQLBase.

Paradise #
C15 03101A01

$143.99

programmers.com/vSphere

FREE ON DEMAND WEBINAR SERIES:
MORE Maximum Data
Modeling with CA ERwin 7.3
In our last webinar series, we looked at CA
ERwin’s core functionality. In this second series,
we provide a grounding in how CA ERwin r7.3’s
new features help you with Master Data Management, Metadata
Management, Data Warehousing, Data Governance and Business Intelligence.

There are six sessions in the on demand series:
• What’s New in CA ERwin 7.3
• MDM (Master Data Management) with CA ERwin and Data

Profiling tool
• Collaborative model management with CA ERwin ModelManager
• Validate the integrity of your model with CA ERwin Validator
• Reporting: Crystal Reports, PDF, HTML
• SAPHIR Option: light at the end of the metadata tunnel

CA ERwin r7.3

VIEW TODAY: programmers.com/MDM_2009

programmers.com/sparxsystems

Enterprise Architect 7.5
Visualize, Document and
Control Your Software Project
by Sparx Systems
Enterprise Architect is a comprehensive,
integrated UML 2.1 modeling suite
providing key benefits at each stage of
system development. Enterprise Architect
7.5 supports UML, SysML, BPMN and
other open standards to analyze, design,
test and construct reliable, well under-
stood systems. Additional plug-ins are
also available for Zachman Framework,
MODAF, DoDAF and TOGAF, and to
integrate with Eclipse and Visual Studio
2005/2008.

Corporate Edition
1-4 Users

Paradise #
SP6 03101A02

$182.99

programmers.com/LEAD

LEADTOOLS Recognition
SDK v16.5
by LEAD Technologies
Develop robust 32/64 bit document
imaging and recognition functionality into
your applications with accurate and
high-speed multi-threaded Forms, OCR,
OMR, and 1D/2D barcode engines.
• Supports text, OMR, image, and

barcode fields
• Auto-registration and clean-up to

improve recognition results
• Provided as both high and low

level interface
• Includes comprehensive confidence

reports to assess performance

Paradise #
L05 26301A01
$3,214.99

NEW
RELEASE!

programmers.com/solarwinds

Orion Network
Performance Monitor
by Solarwinds
Orion Network Performance Monitor is a
comprehensive fault and network performance
management platform that scales with the
rapid growth of your network and expands
with your network management needs.
It offers out-of-the-box network-centric views
that are designed to deliver the critical
information network engineers need.
Orion NPM is the easiest product of its
kind to use and maintain, meaning you
will spend more time actually managing
networks, not supporting Orion NPM.

Paradise #
S4A 08201E02

$4,606.99

Certified
for Windows
7/2008R2

VMware vSphere
Put time back into your day.
Your business depends on how you spend
your time. You need to manage IT costs
without losing time or performance. With
proven cost-effective virtualization solutions
from VMware, you can:

• Increase the productivity of your existing staff
three times over

• Control downtime—whether planned or not

• Save more than 50% on the cost of managing,
powering and cooling servers

Make your time (and money) count for more
with virtualization from VMware.

VMware
Advanced

Acceleration Kit
for 6 processors

Paradise #
V55 78101A01

$9,234.99

programmers.com/flexera

AdminStudio & Application
Virtualization Pack
by Flexera Software
One Application Software Deployment Tool
for Reliable MSI Packaging, Application
Virtualization, and Windows 7 Migration.
Top choice of Microsoft®, Novell®, LANDesk®

and other software management solutions.
Cut MSI packaging time by up to 70%,
Deploy software to desktops with 99%
success or better. AdminStudio is the only
MSI packaging solution to support multiple
virtualization formats, including Microsoft®

App-V™, VMware® ThinApp™ and
Citrix® XenApp™.

Professional
Upgrade from
any Active AS
Pro + Silver Mtn
Paradise #
I21 09401S05

$4,228.99

programmers.com/multiedit

Multi-Edit 2008
by Multi Edit Software
Multi-Edit 2008 delivers, a powerful IDE,
with its speed, depth, and support for
over 50 languages. Enhanced search
functions include Perl 5 Regular
Expressions and definable filters.
Supports large DOS/Windows, UNIX,
binary and Mac files. File Sync
Integration for: Delphi 6, 7, 2005, C++
Builder 6, BDS 2006 and RadStudio
2007, VB 6, VC 6, VS 2003, 2005
and 2008. Includes file compare, code
beautifying, command maps, and
much more.

1-49 Users
Paradise #

A30 01201A01
$179.99

programmers.com/grapecity

FarPoint Spread
for Windows Forms
Now with Charting! The Best Grid is a
Spreadsheet. Give your users the look, feel,
and power of Microsoft® Excel®, without
needing Excel installed on their machines. Join
the professional developers around the world
who consistently turn to FarPoint Spread to
add powerful, extendable spreadsheet solutions
to their COM, ASP.NET, .NET, BizTalk Server
and SharePoint Server applications.
• World’s #1 selling development spreadsheet
• Read/Write native Microsoft Excel Files
• Charts with 85 new chart types
• Fully extensible models
• Royalty-free, run-time free

Paradise #
F02 01101A01
$936.99

NEW
VERSION

5!

Untitled-35 1 1/4/10 3:17 PM

http://www.programmersparadise.com

msdn magazine6

Another new column kicking off is from an old friend of yours.
Charles Petzold is just as legendary as David Platt, having written
numerous programming books over the years, teaching genera-
tions of coders how to do their jobs better. He’s one of the original
contributors to this magazine; in fact, he first appeared in
Volume 1, Issue 1 in October 1986, when the magazine was called
Microsoft Systems Journal.

More recently, Petzold has been a contributor to the Foundations
column, but his stuff is so good that having him in the magazine
three or four times per year wasn’t enough for me. So, aft er much
begging, pleading and threats of physical and psychological torture,
he agreed to go monthly with a new column called UI Frontiers.

Petzold’s vision for the column is that it will, in his words, “Explore
the new presentation and UI capabilities enabled by the XAML-
based programming environments of the Windows Presentation
Foundation and Silverlight, with a special emphasis on cross-plat-
form compatibility. Modern UI design is characterized by an exten-
sive use of 2-D and 3-D graphics and animation, but also (where
appropriate) sound, music, speech and touch.”

Also going monthly is Test Run, by Dr. James McCaff rey. I had
the pleasure of meeting Dr. McCaff rey recently in Redmond, Wash.,
at Microsoft ’s headquarters. He’s just a great guy, and gave me and
my colleagues tremendous insight into the readership of MSDN
Magazine, and many of the issues that are near and dear to your hearts.

He’s also a brilliant writer and developer. It probably gives him
headaches to talk down to my level of comprehension, but with
the help of him and others, I’m getting better.

More changes are in the offing, including more monthly
 columns, a re-focus of content to better serve our day-to-day
developer audience, and other goodies that we’ll be launching in
the near future. I hope you like them, and will tell me about it. I’m
at kward@1105media.com.

Not Your Father’s MSDN

As MSDN Magazine Editorial Director Diego
Dagum mentioned last December, changes are
coming to your favorite developer publication.
Th is month is when they start to kick in.

To begin with, we’ve made some changes to
our column lineup. Th e changes will be imple-
mented gradually over the next few months to
a year. Th e biggest change is that many of the

columns you now enjoy on a quarterly or other irregular basis will
start to appear more oft en—most of them monthly.

We’ll also be starting a few new monthly columns with this issue.
And it begins with the end in this case—specifi cally, the new back-
page column. February is the unveiling of “Don’t Get Me Started,”
by (literal) soft ware legend David S. Platt.

Th e literal part is that Platt was named a Soft ware Legend by
Microsoft in 2002. You may know him better, however, by his
landmark book, “Why Soft ware Sucks” (Addison-Wesley, 2006).
It’s one of 11 soft ware development tomes he has penned, but is by
far the most well-known. Th e title of that book gives good insight
into who Platt is, and how he writes. Th ere are no sacred cows with
him; only heifers ripe for the slaughterhouse. His humor shines
through, but it’s never without a serious point.

Beyond those strengths, what really makes Platt good is his ability
to think like a non-programmer; to put himself in the place of the
end-user trying to muddle through lousy UI design, cryptic error
messages and other development no-nos that leave folks like my
Mom in a state of confused depression.

His fi rst column is a perfect example of that. Floating menu
bars in (earlier versions of) Microsoft Word? How did that one
get through QA? Word’s auto-correct feature, on the other hand,
is a thing of beauty, something that’s useful for my Mom—and me.

(Side note: I was having breakfast recently with two friends of
mine who are veteran developers and longtime MSDN Magazine
readers. I told them Platt was coming onboard. Th ey knew his
work well, and were ecstatic about it. Th at’s Miles Davis to my ears.)

EDITOR’S NOTE

© 2010 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: kward@1105media.com.

Ward.EdNote.0210.Lay4_6.indd 6 1/15/10 11:34 AM

mailto:kward@1105media.com
mailto:kward@1105media.com
http://msdn.microsoft.com/magazine

Untitled-15 1 1/15/10 1:52 PM

http://www.axosoft.com

Grids • Charts • Reports • Schedules • Menus • Toolbars • Ribbon • Data Input • Editors • PDF

WinForms • WPF • ASP.NET • Silverlight • iPhone • Mobile • ActiveX

Untitled-37 2 1/4/10 3:38 PM

http://www.componentone.com/prepare

ComponentOne Sales: 1.800.858.2739 or 1.412.681.4343

DOWNLOAD YOUR FREE TRIAL AT

© 1987-2010 ComponentOne LCC. All rights reserved. iPhone and iPod are trademarks of Apple Inc. All other product and brand names are trademarks and/or registered trademarks of their respective holders.

Untitled-37 3 1/4/10 3:39 PM

http://www.componentone.com/prepare

msdn magazine10

information? Is it information you have downloaded already along
with customer information? Are orders attached to customers? Is
lazy loading an option here?

Th e code we’re considering is expected to run on the client side,
so you can’t rely on lazy loading facilities built into some object/
relational modeling (O/RM) tools such as Entity Framework or
NHibernate. If orders are to be lazy-loaded, then any code is up to
you. On the other hand, if you can assume that orders are already
available on the client—that is, orders have been downloaded along
with the customer information—then you’re pretty much done. All
you need to do is bind orders data to some HTML template and go.

Obviously, things get much more interesting if lazy loading is
what you want. Let’s work out this scenario, then.

As a side note, you should know that lazy loading is fully
supported if you get your data through the AdoNetDataContext
object. (I’ll cover this in future articles.) For more information,

CUTTING EDGE

Predictive Fetch with jQuery
and the ASP.NET Ajax Library

Last month I discussed the implementation of
master-detail views using the new features com-
ing with the ASP.NET Ajax Library. Th e list of new
features includes a syntax for client-side live data
binding and a rich rendering component, exem-
plifi ed by the DataView client control. By putting
these features together, you can easily build nested
views to represent one-to-many data relationships.

In the ASP.NET Ajax Library, the mechanics
of master-detail views are largely defi ned in the
logic of the DataView component and in the way
the component handles and exposes its events.

Th is month I’ll go one step further and dis-
cuss how to implement a common and popular
AJAX design pattern—predictive fetch—on top
of the ASP.NET Ajax Library. Basically, I’ll extend
last month’s example—a relatively standard drill-
down view into customer details—to automati-
cally and asynchronously download and display
related orders, if any exist. In doing so, I’ll touch
on some jQuery stuff and take a look at the new
jQuery integration API in the ASP.NET Ajax
Library. Without further ado, let’s review the con-
text and build a fi rst version of the example.

The Demo to Expand
Figure 1 shows the application scenario on top
of which I’ll add predictive fetch capabilities.

Th e menu bar allows the user to fi lter customers by initial. Once
a selection is made, a smaller list of customers is displayed through
an HTML bulleted list. Th is is the master view.

Each rendered item has been made selectable. Clicking on one
causes the details of the customer to be displayed in the adjacent
detail view. Th is is where I left off last month. As you can see in
Figure 1, the user interface now shows a button to view orders. I
proceed from here onward.

Th e fi rst decision to be made is architectural and relates to
the use-case you are considering. How would you load order

DINO ESPOSITO

This column is based on a pre-release version of the ASP.NET Ajax Library. All
information is subject to change.

Send your ques ons and comments for Dino to cu ng@microso .com.

Code download available at code.msdn.microsoft.com/mag201002CuttingEdge.

Figure 1 The Initial Stage of the Sample Application

http://code.msdn.microsoft.com/mag201002CuttingEdge
mailto:cutting@microsoft.com

Project3 12/16/09 11:55 AM Page 1

http://www.nsoftware.com

msdn magazine12 Cutting Edge

be sure to look at asp.net/ajaxlibrary/Reference.Sys-Data-AdoNetServiceProxy-

fetchDeferredProperty-Method.ashx.

A New Way to Load Script Libraries
For years, Web developers had been left alone to fi gure out which
script fi les a page would need. Th at wasn’t a daunting task,
because the limited amount of simple JavaScript code that was
used made it quite easy to check whether a required fi le was
missing. Increased amounts of complicated JavaScript code in Web
pages introduced the problem of splitting scripts among distinct
fi les and, subsequently, referring to them properly to avoid nasty
runtime “undefi ned object” errors.

Many popular JavaScript libraries have been providing facilities
in this regard for years now. For example, the jQuery UI library has
a modular design and allows you to download and link only the
pieces you really need. Th is same capability is also off ered by the
scripts that make up the ASP.NET Ajax Library. Th e script loader,
however, is something more.

Th e script loader provides a number of extra services and builds
on the partitioning of large script libraries into smaller pieces.
Once you tell the loader about the libraries you’re interested in, you
delegate to the loader any tasks related to the correct ordering of
required fi les. Th e script loader loads all required scripts in parallel
and then executes them in the right order. In this way, the loader saves
you from any “missing object” exceptions and provides the fastest
way to handle scripts. All you need to do is list the scripts you want.

Hey, wait a moment. If I have to list all scripts I need, what are
the benefi ts of using a loader? Well, what the loader requires is
 nowhere near to what is required in the well-known process of
linking assemblies to a project. You link assembly A and let the
Visual Studio 2008 loader fi gure out any static dependencies. Here’s
a code snippet that shows how to deal with the script loader:

Sys.require([Sys.components.dataView, Sys.scripts.jQuery]);

Th e Sys.require method takes an array of references to the scripts
you want to link to your page. In the preceding example, you are in-
structing the loader to take care of two scripts—dataView and jQuery.

As you can see, however, the call made to the method Sys.re-
quire doesn’t include any Web server path to any physical .js fi les.
Where’s the path, then?

Scripts that will work with the ASP.NET Ajax Library loader are
required to defi ne themselves to the loader and inform it when they
load completely. Registering a script with the loader doesn’t cause
any round trip, but is simply a way to let the loader know that it
may be called upon to manage a new script. Figure 2 includes an
excerpt from Microsoft Ajax.js that shows how jQuery and jQuery.
Validate are registered with the loader.

Of course, you can use this approach with custom scripts and
client controls as well. In that case, you need to reference the loader-
specifi c defi nition of the script in addition to your actual script. A
loader-specifi c defi nition includes release and debug server paths
of the script, a public name used to reference it, dependencies and
an expression to be evaluated in order to test whether the library
loaded correctly.

In order to use the script loader component, you need to
reference a new JavaScript fi le named start.js. Here’s an excerpt
from the sample application that uses a mix of old and new script-
loading techniques:

<asp:ScriptManagerProxy runat="server" ID="ScriptManagerProxy1">
 <Scripts>
 <asp:ScriptReference Path="~/Scripts/Ajax40/Preview6/start.js"/>
 <asp:ScriptReference Name="MicrosoftAjax.js"
 Path="~/Scripts/MicrosoftAjax.js"/>
 <asp:ScriptReference Path=
 "~/Scripts/MicrosoftAjaxTemplates.js"/>
 <asp:ScriptReference Path="~/MasterDetail4.aspx.js"/>
 </Scripts>
</asp:ScriptManagerProxy>

You reference the start.js fi le using a classic <script> element.
Other scripts can be referenced using the ScriptManager control,
plain <script> elements or the Sys.require method. As you can see
from the code snippet above, there’s no reference to the jQuery
library. In fact, the jQuery library is referenced programmatically

loader.defineScripts(null, [
 { name: "jQuery",
 releaseUrl: ajaxPath + "jquery/jquery-1.3.2.min.js",
 debugUrl: ajaxPath + "jquery/jquery-1.3.2.js",
 isLoaded: !!window.jQuery
 },
 { name: "jQueryValidate",
 releaseUrl: ajaxPath +
 "jquery.validate/1.5.5/jquery.validate.min.js",
 debugUrl: ajaxPath + "jquery.validate/1.5.5/jquery.validate.js",
 dependencies: ["jQuery"],
 isLoaded: !!(window.jQuery && jQuery.fn.validate)
 }
]);

Figure 2 Register jQuery and jQuery.Validate with the
Script Loader

function fetchOrders(elem)
{
 // Set the customer ID
 var id = elem["commandargument"];
 currentCustomer = id;

 // Check the jQuery cache first
 var cachedInfo = $('#viewOfCustomers').data(id);
 if (typeof (cachedInfo) !== 'undefined')
 return;

 // Download orders asynchronously
 $.ajax({
 type: "POST",
 url: "/mydataservice.asmx/FindOrders",
 data: "id=" + id,
 success: function(response) {
 var output = response.text;
 $('#viewOfCustomers').data(id, output);
 if (id == currentCustomer)
 $("#listOfOrders0").html(output);
 }
 });
}

Figure 3 The Code to Fetch Orders

You can easily build nested views
to represent one-to-many data

relationships.

http://asp.net/ajaxlibrary/Reference.Sys-Data-AdoNetServiceProxy-fetchDeferredProperty-Method.ashx
http://asp.net/ajaxlibrary/Reference.Sys-Data-AdoNetServiceProxy-fetchDeferredProperty-Method.ashx

13February 2010msdnmagazine.com

from the page-specifi c JavaScript fi le linked
via the ScriptManager.

Another interesting feature in the
ASP.NET Ajax Library is the availability of
jQuery features through the Sys namespace
and, conversely, the exposure of Microsoft
client components as jQuery plugins. Th is
means, for example, that you can register an
event handler for the ready event—a typical
jQuery task—using the Sys.onReady func-
tion, as shown here:

 Sys.onReady(
 function() {
 alert("Ready...");
 }
);

Given all these new features, the typical start-
up of a JavaScript fi le to be used as an extension
of a Web page looks like the following:

// Reference external JavaScript files
Sys.require([Sys.scripts.MicrosoftAjax,
 Sys.scripts.Templates,
 Sys.scripts.jQuery]);
Sys.onReady(
 function() {
 // Initialize scriptable elements
 // of the page.
 }
);

An even simpler approach is possible,
however. You can use Sys.require to load a control like a DataView
instead of the fi les that implement it. Th e script loader would load
these fi les automatically based on the dependencies defi ned for the
DataView. Let’s focus on predictive fetch.

Handling the Customer Selection
To obtain the user interface shown in Figure 1, you use HTML
templates and attach data to data-bound placeholders using the
DataView component. Customer details are automatically shown due
to DataView-based data binding when you click on a listed customer.
Orders, however, are not bound directly via the DataView. Th is is
because of the requirements we set at the beginning of the article—by
design, orders are not downloaded with the customer information.

To fetch orders, therefore, you need to handle the change of
selection within the template associated with the DataView.
Currently, the DataView doesn’t fi re a selection-changed event. Th e
DataView does provide great support for master-detail scenarios,
but much of it happens automatically, even though you can
create custom commands and handlers (see asp.net/ajaxlibrary/

Reference.Sys-UI-DataView-onCommand-Method.ashx). In particular, you set
the sys:command attribute to “select” on any clickable elements
that can trigger the details view, as shown here:

 <span sys:command="Select"
 id="itemCustomer"
 class="normalitem">
 {binding CompanyName}
 {binding Country}

When the element is clicked, it fi res an onCommand event within
the DataView and, as a result, the content of the selectedData

property is updated to refl ect the selection. Subsequently, any parts
of the template that are bound to selectedData are
refreshed. Data binding, however, entails updating displayed data,
not executing any code.

As mentioned, when a command is fi red within the DataView,
the onCommand event is raised internally. As a developer, you
can register your own handler for the event. Unfortunately, at least
with the current prerelease version of the DataView component,
the command handler is invoked before the selected index prop-
erty is updated. Th e net eff ect is that you can intercept when the
details view is about to show, but you have no clue about the new
content being shown. Th e only goal of the event seems to be giving
developers a way to prevent the change of selection should some
critical conditions not be verifi ed.

An approach that works today, and that will continue work-
ing in the future regardless of any improvements to the DataView
component, is the following. You attach an onclick handler to any
clickable elements of the master view and bind an extra attribute to
contain any key information that is helpful. Here’s the new markup
for the repeatable portion of the master view:

 <span sys:command="Select"
 sys:commandargument="{binding ID}"
 onclick="fetchOrders(this)"
 id="itemCustomer"
 class="normalitem">
 {binding CompanyName}
 {binding Country}

Th e markup presents two changes. First, it now includes a new
sys:commandargument attribute; second, it has a handler for the
click event. Th e sys:commandargument attribute contains the ID

Figure 4 Fetching and Displaying Orders

www.msdnmagazine.com
http://asp.net/ajaxlibrary/Reference.Sys-UI-DataView-onCommand-Method.ashx
http://asp.net/ajaxlibrary/Reference.Sys-UI-DataView-onCommand-Method.ashx

msdn magazine14 Cutting Edge

of the customer that has been selected. Th e ID is emitted through
data binding. Th e attribute where you park the ID doesn’t have to
be sys:commandargument necessarily; you can use any custom
attribute as well.

Th e click handler is responsible for fetching orders according to
whatever loading policy you have set. Figure 3 shows the source
code of the orders loader.

The fetchOrders function receives the DOM element that was
clicked. First, it retrieves the value of the agreed attribute that
contains the customer ID. Next, it checks whether orders already
exist in the jQuery client cache. If not, it finally proceeds with
an asynchronous download. It uses a jQuery AJAX method to
arrange a POST request to a Web service. I’m assuming in this
example that the Web service employs the “HTML Message”
AJAX pattern and returns plain HTML ready to be merged with
the page. (Note that this is not necessarily the best approach and
mostly works in legacy scenarios. From a pure design perspec-
tive, querying an endpoint for JSON data would generate a much
lighter payload.)

If the request is successful, the orders markup is fi rst cached and
then displayed where expected (see Figure 4).

Figure 4 shows only a screenshot and doesn’t really explain
what’s going on. As you click to select a customer to drill down,
the request for orders fi res asynchronously. Meanwhile, the details
of the customer are displayed. As you may recall, there’s no need
to download customer information on demand, as that informa-
tion is downloaded in chunks as the user clicks on the high-level
menu of initials.

Downloading orders may take a while and is an operation that
doesn’t give (or require) any feedback to the user. It just happens,

and it’s completely transparent to the user.
Th e whole point of the predictive fetch
pattern is that you fetch information in
advance that the user may possibly request.
To represent a true benefi t, this feature has
to be implemented asynchronously and,
from a usability perspective, it’s preferable
if it’s invisible to the user.

Let’s focus on the most common tasks a
user would perform on the user interface
in Figure 4. A user would typically click to
select a customer. Next, the user would likely
spend a few moments reading the displayed
information. As the user views the display,
the orders for the selected customer are
silently downloading.

Th e user may, or may not, request to view
orders immediately. For example, the user
may decide to switch to another customer,
read the information and then switch back
to the fi rst one, or perhaps navigate to yet
another. In any case, by simply clicking to
drill down on a customer, the user triggers
the fetch of related orders.

What happens to downloaded orders?
What would be the recommended way of dealing with them upon
download?

Dealing with Fetched Orders
Frankly, I can’t fi nd a clearly preferred way to deal with preloaded
data in such a scenario. It mostly depends on the input you get
from your stakeholders and end users.

However, I would suggest that orders be automatically displayed
if the user is still viewing the customer for which the download of
orders has just completed.

Th e $.ajax method works asynchronously and is attached to its
own success callback. Th e callback receives orders downloaded for
a given customer, but at the time the callback runs, the displayed
customer may be diff erent. Th e policy I used ensures that orders
are displayed directly if they refer to the current customer.
Otherwise, orders are cached and made available for when the user
comes back and clicks the “View orders” button.

Let’s have a second look at the success callback for the fetch
procedure:

 function(response)
{
 // Store orders to the cache
 $('#viewOfCustomers').data(id, response.text);

 // If the current customer is the customer for which orders
 // have been fetched, update the user interface
 if (id == currentCustomer)
 $("#listOfOrders0").html(response.text);
}

Th e id variable is local to the $.ajax method and is set with the
ID of the customer for which orders are being fetched. Th e current-
Customer variable, though, is a global variable that is set any time
the fetch procedure is executed (see Figure 3). Th e trick is that a

Figure 5 Orders are Not Yet Available

15February 2010msdnmagazine.com

global variable may be updated from multiple points, so the check
at the end of the download callback makes sense.

What’s the role of the “View orders” button that you see in
Figure 1 and Figure 4? Th e button is there for users wanting
to see orders for a given customer. By design, in this example
displaying orders is an option. Hence, a button that triggers the view is a
reasonable element to have in the user interface.

When the user clicks to view orders, order information may,
or may not, be available at that time. If orders are not available, it
means that—by design—the download is pending, or it has failed
for some reason. Th e user is therefore presented with the user
interface shown in Figure 5.

If the user remains on the same page, orders display automati-
cally as the download completes successfully, as in Figure 4.

The First Displayed Customer
One thing remains to fi nish the demo of this master-detail
scenario enriched with predictive fetch capabilities. Th e Data-
View component allows the specifi cation of a particular data item
to be rendered in selected mode on display. You control the item
to be initially selected via the initialselectedindex attribute of the
DataView component. Th is is shown below:

 <ul class="sys-template" sys:attach="dataview" id="masterView"
 dataview:dataprovider="/aspnetajax4/mydataservice.asmx"
 dataview:fetchoperation="LookupCustomers"
 dataview:selecteditemclass="selecteditem"
 dataview:initialselectedindex="0">

In this case, the fi rst customer retrieved for the selected initial
is automatically displayed. Because the user doesn’t need to click,
no automatic fetch of orders occurs. You can still access the orders
of the fi rst customer by clicking on it again. In this way, the fi rst
customer will be processed as any other displayed customer. Is
there any way to avoid such behavior?

For the user, clicking to view orders wouldn’t be suffi cient for the
fi rst customer. In fact, the button handler limits the information
that can be displayed to what’s in the cache. Th is is done to avoid
duplicated behavior in code and to try to do everything once and
only once. Th is is shown here:

 function display()
{
 // Attempt to retrieve orders from cache
 var cachedInfo = $('#viewOfCustomers').data(currentCustomer);
 if (typeof (cachedInfo) !== 'undefined')
 data = cachedInfo;
 else
 data = "No orders found yet. Please wait ...";

 // Display any data that has been retrieved
 $("#listOfOrders0").html(data);
}

Th e preceding display function has to be slightly improved to
trigger order fetches in the case of no current customer selection.
Th is is another reason for having a global currentCustomer
variable. Here’s the edited code of the display function:

function display()
{
 if (currentCustomer == "")
 {
 // Get the ID of the first item rendered by the DataView
 currentCustomer = $("#itemCustomer0").attr("commandargument");

 // The fetchOrders method requires a DOM element.
 // Extract the DOM element from the jQuery result.
 fetchOrders($("#itemCustomer0")[0]);
 }

 // Attempt to retrieve orders from cache
 ...

 // Display any data that has been retrieved
 ...
}

If no customer has been manually selected, the
sys:commandargument of the fi rst rendered item is read. Th e
quickest way of doing that is leveraging the naming convention for
the ID of items rendered through the DataView. Th e original ID
is appended with a progressive number. If the original ID is item-
Customer, then the ID of the fi rst element will be itemCustomer0.
(Th is is an aspect of DataView that may change in the fi nal release
version of the ASP.NET Ajax Library.) Note also that fetchOrders
requires you to pass in a DOM element. A jQuery query returns
a collection of DOM elements. Th at’s why in the code above you
need to add an item selector.

Finally, note that another solution is also possible, if it’s
acceptable to you that no customer is initially displayed aft er
data binding. If you set the initialselectedindex attribute of the
DataView to -1, no customer would be initially selected. As a
result, to see order details, you need to click on any customer, which
would trigger the fetch of associated orders.

Wrapping Up
Th e DataView is a formidable instrument for data binding in the
context of Web client applications. It’s specifi cally designed for
common scenarios such as master-detail views. It doesn’t support
every possible scenario, however. In this article, I showed some
code that extends a DataView solution through the implementa-
tion of the “predictive fetch” pattern.

[Th e ASP.NET Ajax Library beta is available for download at
ajax.codeplex.com. It is expected to be released at the same time as Visual
Studio 2010.—Ed.]

DINO ESPOSITO is the author of the upcoming “Programming ASP.NET MVC” from
Microsoft Press and co-authored “Microsoft .NET: Architecting Applications for the
Enterprise” (Microsoft Press, 2008). Based in Italy, Esposito is a frequent speaker at
industry events worldwide. You can join his blog at weblogs.asp.net/despos.

THANKS to the following technical expert for reviewing this article:
Stephen Walther

The DataView is a formidable
instrument for data

binding in the context of Web
client applications.

www.msdnmagazine.com
http://ajax.codeplex.com
http://weblogs.asp.net/despos

Project6 11/5/09 2:51 PM Page 1

http://www.xceed.com

Project6 11/5/09 2:52 PM Page 2

http://www.xceed.com

and oft en the linear input is more akin to a lunar orbit than a straight
line. And it’s not just the data that’s diff erent; input is expected to
result in a smooth, animated response, proportional to the input
sequence. At this point, it’s clear the mouse paradigm no longer
fi ts and we need something new and diff erent to help describe
this type of input and understand how to respond. Enter gestures.

It’s Not Just About Touch Gestures
Before we get to the details of touch gestures, let’s take a moment to
step back and think on a broader level about gestures in general. A
gesture can mean lots of diff erent things. It might be a fi nger move-
ment on a computer screen, but shaking your head is also a gesture,
as is waving your arm or shaking hands with someone. My point is
that it would be shortsighted to just consider the input on a screen
as the only source of gestures. Many devices today have multiple
sensors, including touch screens, accelerometers, compasses, GPS
instruments and cameras. Shaking a device, turning it over, turn-
ing it around in a circle or even just smiling at the camera could all
be interpreted as gestures to which the soft ware needs to respond,
and that’s just with the sensors we know about today.

With this in mind, the architecture in Windows Mobile 6.5 was
designed to separate a gesture’s source and recognition process

Gesture Magic

Touchable screens have been synonymous with
Windows Mobile since the fi rst devices appeared back in
2002; however, Windows Mobile 6.5 is the fi rst version
to claim any form of gesture support that is exposed to
developers. So what is a gesture and why all the fuss?

Th e traditional touch screens found on Windows
Mobile Professional devices provide a mouse simula-
tion surface producing mouse-left -button and mouse-
move messages through the screen driver interface.
Th ese messages are processed and delivered as if the
screen and stylus were a physical mouse, and there
are defi nite similarities: a mouse produces a stream
of location coordinates in a linear fashion and can
be used as a very precise pointing device, just like a
stylus on a screen.

Th ere are diff erences, as well. For example, a mouse
sends position information independent of button
information, but the touch screen always simulates the left but-
ton being pressed and sends position information only when there
is contact with the screen. Th is paradigm can continue as long as
the similarities remain strong. However, with the ever-increasing
screen sizes on modern phones, the most natural and intuitive stylus

rapidly becomes the user’s index fi nger. For consumer markets,
reliance on a fi ddly and easily lost stylus is fast going out of fashion,
replaced with the demand for a bold and interactive interface that
shouts “touch me!” to encourage an emotional connection with a user.

Fingers and thumbs present a diff erent profi le, in total contrast
to the precision of a stylus tip, so we see the similarities to mouse
input break down. Th e input data is no longer pinpoint accurate,

GOING PLACES MARCUS PERRYMAN

Send your questions and comments for Marcus to goplaces@microsoft.com.

Code download available at code.msdn.microsoft.com/mag201002Gesture.

msdn magazine18

Figure 1 General Gesture Architecture

Although we may have only
touch gesture recognition
today, new gestures can be

delivered through the system
once the sensor and recognition

components are present.

mailto:goplaces@microsoft.com
http://code.msdn.microsoft.com/mag201002Gesture

19February 2010msdnmagazine.com

from the routing, delivery and response to that
gesture. Although we may have only touch gesture
recognition today, new gestures can be delivered
through the system once the sensor and recognition
components are present. New sensors and recognition
soft ware can be added by hardware manufacturers
and integrated into the existing gesture delivery
architecture—see Figure 1. I’ll come back later to look
more closely at gesture targeting and delivery.

Touch Recognizer
Figure 2 shows the new touch gesture components
in Windows Mobile 6.5: Gesture Recognizer, Gesture
Delivery, Physics Engine, and Window Auto Gesture
(WAG). We will take a look at each, starting with the
Gesture Recognizer.

The Gesture Recognizer component connects
directly to the input from the existing touch driver.
Th e input information provided by the driver remains unchanged
in Windows Mobile 6.5 in order to keep OEM development costs
low and to encourage adoption.

Th ere are fi ve recognized touch gestures in Windows Mobile
6.5 (see Figure 3):

• Select: touch location stays within a movement threshold (that
is, the maximum allowed movement of the fi nger), and touch
duration is less than the threshold time.

• Hold: touch location stays within a more lenient threshold and
exceeds the select threshold time.

• Double Select: two correctly recognized select gestures are rec-
ognized within a threshold time, and occur within a distance
tolerance.

• Pan: touch point movement exceeds the select threshold. Th is
gesture is slightly diff erent and is classed as continuous because
it generates more than one gesture event.

• Scroll: the most complex gesture to recognize, as it has speed,
angle deviation and distance thresholds.
You might wonder why we have some of these gestures, because

the mouse behavior appears suffi cient to acquire the same infor-
mation. For example, the Select gesture seems just like clicking on
a button, and Pan is just like a mouse move. Th ere are two main
reasons why all fi ve of these gestures are important.
Consistency: A mouse click is received as two messages, down
and up of the mouse button. Th e exact behavior for recognizing
a click is specifi c to the control that recognizes it. For example,
a button control recognizes the mouse down and mouse up as
a click when both locations are within the windows bounds. In
contrast, the ListView control recognizes the same event, but for
each item in its list. Th e Select gesture is recognized independently
of the control, using consistent parameters. Th e distance thresh-
olds used for gesture recognition are resolution-aware (or more
accurately, dots-per-inch-aware) and are set in order to work with
the broadest range of fi nger profi les (there is a surprising range of
fi nger shapes). So the same physical distances are used on diff erent-
sized screens to provide consistency among devices.
Routing: A fi nger is not an accurate pointing device, especially

when the user is moving or walking around, so it’s vital that appli-
cations maximize the touchable target area. Th e Gesture Delivery
component implements some specifi c rules to assist with this task
and increase the value of these simple gestures.

Routing
Gesture information is delivered via the new WM_GESTURE
message, and as with all window messages, there are associated
parameters—DWORD wParam and LONG lParam—that contain
the details of the message. Th e WM_GESTURE message param-
eters contain the gesture ID as a wParam to indicate which gesture
is being delivered, and a handle to the full gesture information as
an lParam. A mouse message is always sent to the topmost window
at the location of the mouse coordinates (discounting mouse
capture scenarios), but for gestures the rules are diff erent. Gesture
messages are diff erent and are always sent to the topmost window

Figure 2 Touch Gesture Components

Figure 3 Five Core Gestures

www.msdnmagazine.com

msdn magazine20 Going Places

under the very fi rst touch point of the sequence that makes up the full
gesture sequence. This subtlety doesn’t make much of an
impact for Select, Hold and Double Select gestures, which have only
small screen movement tolerances. However, the Pan gesture is quite
diff erent. When you start panning, all Pan messages are sent to the
window in which the panning starts, even if the panning movement
takes the touch point outside of that original window.

In the same way, the Scroll gesture is recognized many pixels
from its original touch-point location. But it makes sense that the
Scroll should be routed to the same window as the preceding Pan
messages, as the user started the input sequence in that original
control and intended to target it. Considering that the Pan
gesture is oft en associated with direct manipulation—moving
content around the screen as if it were a piece of paper on a
desktop—this routing makes a lot of sense, because the control or
screen point under the fi nger on the initial touch should remain
under the fi nger as the content is moved around the screen.

Unhandled Message Routing
Another unusual aspect of gesture message routing is what hap-
pens to unhandled gesture messages. Like all unhandled messages,
they end up being sent to DefWindowProc for default processing.
When DefWindowProc receives a gesture message, it attempts to
fi nd the window’s parent and send the message on to that window.
Th is is done to maximize the touchable area available to the user.

To help explain, consider a scrollable window with a number
of child label controls. Th e parent window implements Pan and
Scroll gesture response logic to move the child label controls up
and down on the visible surface. However, the label controls are
unmodifi ed and know nothing about gesture support. If the user
happens to start a gesture by touching on a label control instead
of the parent window, the user’s expectation is the same—that the
form will move in response to input movement. By forwarding the
unhandled gesture messages from the label control to the parent
window, the user’s expectation is met and the content moves as if
the user had touched on the form directly. Th is behavior is illus-
trated in Figure 4.

Th ere is a small gotcha to call out here: Never send gesture
messages from parent to child window or you risk invoking an
infi nite loop and an inevitable stack overfl ow crash. Th ere is some
basic loop detection implemented in DefWindowProc to try to
prevent this situation, but it may not detect all occurrences.

Gesture Messages
Windows Mobile 6.5 recognizes fi ve gestures, but applications can
receive seven gesture types. Th e extra two gesture types are BEGIN
and END, sent at the beginning and end of a gesture sequence (all
gesture types are prefixed with GID_ to indicate Gesture
IDentifi er, so these are GID_BEGIN and GID_END). For example,
if a Select gesture is recognized, the application will receive three
gesture messages: GID_BEGIN, GID_SELECT and GID_END.
For a Pan sequence ending in a Scroll gesture, the application will
receive GID_BEGIN, GID_PAN, GID_PAN …, GID_SCROLL
and fi nally GID_END.

GID_BEGIN is useful as it contains the screen coordinates of
the original touch point. GID_END is handy as it indicates when
the user input has ended and no further gestures will be sent for
the current sequence.

To help introduce the basic gesture recognition and delivery
system in Windows Mobile 6.5, I’ve included a Visual Studio
project in the attached samples called SimpleGestureCapture.
Th is sample shows a listbox and adds a new line for every gesture
message received by the main window, including location informa-
tion for all gestures and the angle and speed of scroll gestures. You
will need Visual Studio 2005 or Visual Studio 2008 plus the Windows
Mobile 6 Professional SDK and the Windows Mobile 6.5 Developer
Tool Kit installed. From this sample you can see how the gesture
message is received and the data extracted.

Physics
Th e most exciting part of gesture support is the natural response
users experience when manipulating screen content. Th e key part
of this response is the consistent, predictable and natural experi-

ence across the device. To achieve this consistency, a
new component has been added to the OS called the
Physics Engine. Th is module provides a suite of
number-crunching algorithms that take input infor-
mation, such as the angle and speed from a Scroll
gesture, and decay the speed over time using a
specifi c deceleration coeffi cient. Also, the Physics
Engine can be used to apply boundary animations
when the input speed is suffi cient to move the anima-
tion point outside a bounding rectangle.

To use the Physics Engine in Windows Mobile 6.5, a
new instance of the Physics Engine must fi rst be created
and initialized. Th en, at regular time intervals, it’s polled Figure 4 Message Routing

Never send gesture messages
from parent to child window

or you risk invoking an infi nite
loop and an inevitable stack

overfl ow crash.

21February 2010msdnmagazine.com

to retrieve the current animation location
and the calling application redraws its
client region appropriately. Th e Physics
Engine will continue to decay the speed of
the animation until it falls below a mini-
mum threshold value, at which point it’s
marked as complete and can be released.

As part of the initialization data, the
application must specify the bounding
rectangle of the data space as well as the
view rectangle for the display space (see
Figure 5). If the view rectangle moves
outside the bounding rectangle, the
Physics Engine will use the selected
boundary animation (again, part of
the initialization data) to bring the
view rectangle back inside. Th e Physics
Engine initialization is fl exible enough
to allow animation in just one axis or to
have diff erent boundary animation for
each axis if required.

By default the Physics Engine decays
the speed based on a time delta taken from the point of initial-
ization to the time of each location retrieval call. Th e calling app
can override this by specifying a “user time” value and have the
Physics Engine calculate the location at that time. Th is can be useful
for fi nding the screen position where an animation will complete.

Another interesting Physics Engine confi guration is that of item
size. Th is information is used to impose a grid of valid stopping
positions over the data space, forcing the Physics Engine to allow
the view location fi nal position to end only at one of these grid
coordinates. Th is behavior is helpful when an application is
displaying a list of items on the screen and doesn’t want a partial
item to be displayed at the top of the screen. Th e behavior works
in either or both axes and will adjust the animation decay and stop
algorithms to extend or contract the duration of the animation so
it hits the required stopping points.

Putting It Together
For an application to fully support touch gestures, it needs to be
enhanced to recognize the appropriate gesture messages and
respond appropriately. Where necessary, it needs to create and
query a Physics Engine instance to drive the screen redraw.
Moreover, the application needs to consider what should happen
if an animation or gesture sequence is interrupted by further user
input or other events, and ensure that it’s handled in an effi cient
way. Although all of this is relatively straightforward to achieve, it
does require a reasonable amount of boilerplate code that must be
created for each window that responds to gestures. So in Windows
Mobile 6.5, a number of steps have been taken to simplify this task.

First, a number of the inbuilt controls have already been
updated to support gestures, including the LISTVIEW, LISTBOX,
TREEVIEW and WEBVIEW controls (some modes don’t support
gestures). If you are already using any of these controls, your app
is already gesture-enabled.

For applications that don’t make use of
the inbuilt controls, there is a new API
that signifi cantly simplifi es the work
required to enable gesture support in
the most common scenarios, called
Window Auto Gesture (WAG).

Window Auto Gesture
Th e WAG logic is tightly bound to the
DefWindowProc() processing to pro-
vide a default gesture response available
for any window. When enabled, WAG
will automatically respond to GID_PAN
and GID_SCROLL gestures, create a
Physics Engine instance and send the
relevant positioning data back to the
application through notifi cation mes-
sages. WAG also implements gesture
interruption by monitoring the input
queue when a pan or scroll gesture is in
progress, providing appropriate transi-
tions to and from an animation state.

Th e default confi guration for WAG is to ignore gesture messages,
so any window that wants to use the WAG behavior must enable it
fi rst. To turn gesture support on, the application must call TKSet-
WindowAutoGesture for each window that requires support and
pass the confi guration settings required. As I said earlier, WAG is
intended to simplify the most common scenarios for gesture
support, and in order for WAG to drive your window, it must have
been created with the WS_VSCROLL and/or VS_HSCROLL style

set in the axes that can be manipulated by touch gestures. Addi-
tionally, the application is required to correctly manage the scroll
bar, maintaining the range, min/max and page size as appropriate.
Th is is required so that WAG can calculate the data area size that
your window is displaying.

WAG has a number of options worth calling out:
• WAG will handle both GID_PAN and GID_SCROLL gestures,

but either can be disabled if required.
• Like the Physics Engine, WAG also supports setting item width

and height. Th is information is used not only to set the snap-
ping points, but also to expand the scroll range values from an
item count to a pixel count. For example, if the scroll bar range
is 0 to 9 for a list of 10 items, and each item requires 20 pixels
vertically to display its content, then the item height should be
set to 20. WAG will multiply the scroll range (10) by the pixel

Figure 5 How the Physics Engine Handles
Bounding and Display Rectangles

The most exciting part of
gesture support is the natural

response users experience when
manipulating screen content.

www.msdnmagazine.com

msdn magazine22 Going Places

height (20) to identify the full pixel range of the data (200 pixels).
• WAG supports a special mode that will drive the window move-

ment by generating WM_xSCROLL messages to the applica-
tion instead of the more common owner animation messages.
Th is is useful if you have a legacy application and want touch
gesture support with the absolute minimum changes to its
code. Th is mode is enabled by setting the nOwnerAnimate-
Message value that is part of the TKSetWindowAutoGesture()
initialization data to 0 instead of the normal WM_USER + x
value. Some functionality is limited in this mode, such as no
support for pixel-by-pixel manipulation—the control can only
be manipulated item by item. Also, there is no way to go outside
the scroll range in this mode, so the extent values are ignored.
Th is option doesn’t work well for scrolling in both axes at the
same time because each axis must be moved independently.

• Extents describe the distance the display area can be dragged
beyond the data range and is expressed as a percentage of the
display size. Take care when enabling extents, because this
allows the user to drag the display beyond the scroll limits
and expose a screen area that many existing applications aren’t
capable of handling correctly. Ensure the application is
correctly clearing the screen when space appears beyond the
top or to the left of the data range.
Typically an application will confi gure WAG with nOwnerAnimate-

Message as a value in the range WM_USER to WM_APP. WAG will
use this value in the message sent back to the application each time
the application needs to redraw its display area. Th e fi rst animation
message in a sequence will be pre-
ceded by a status message indicat-
ing that the control is now
responding to gesture input. WAG
automatically aggregates
GID_PAN gesture messages and
only sends an animation message
to the application at a maximum
frequency of 24 times per second
(regulated using the GESTURE_
ANIMATION_FRAME_DELAY_MS timer duration found in
gesturephysics.h from the Windows Mobile 6.5 Developer Tool Kit).
Th e same applies for scroll animations, where WAG uses the same
timer to query its Physics Engine a maximum of 24 times per second.

Th e status message option for WAG is especially useful if your
control supports focus or changes visually without user inter-
action, for example via asynchronous updates. Status messages
tell the control when the user is interacting through the touch
interface. Th ey should be used as a trigger to halt any updates that
might change the visual aspects of the control or its content, or
unnecessarily take resources from the screen animation. Producing a
full-screen animated eff ect can be resource-intensive, so it’s
important to halt any unnecessary background processing and
concentrate the resources to provide smooth and timely response
to the user. Once the touch interaction is done, use the status
message to trigger a data refresh and update, if required.

For more information on the WAG API, see the MSDN docu-
mentation for Windows Mobile 6.5 (msdn.microsoft.com/library/ee220917).

Tips and Tricks
Using the gesture API to accept and process gesture information
is straightforward. However, it can be a little trickier to produce
smooth animation in response to the gestures. Here are some tips
that may help.
First frame time is vital. It’s surprising how sensitive the
human eye can be to user interface latency. For example, a
delay of more than 100ms between a screen touch and a graphical
response can result in a feeling of sluggishness, even if the applica-
tion then maintains a steady 24 frames per second (fps). Work to
ensure the fi rst frame response is fast, ideally below 50ms. It’s worth
noting that the overhead of the Gesture Recognizer and Gesture
Delivery have been carefully optimized, resulting in only 1ms or
2ms from touch to application.
Prefer a consistent frame rate. In our testing, users preferred
a slightly slower but more consistent frame rate over a faster but
more variable rate. We applied this information by making a tim-
er to regulate the frame update frequency, and tuning the timer to
ensure some free CPU time in each frame to handle other tasks.
Remove unnecessary overhead during animation. It’s
obvious that the less work there is per frame, the more frames
can be drawn per second. However, it’s sometimes harder to
identify exactly what work can be left out. During touch manipulation,
and especially during scroll animations, the user is less interested in
detail and more interested in broad indicators. For example, while
scrolling a list of e-mail messages, the user might be less interested in a
preview of each message but more interested in its location in the list

and its title. So it may be okay to
stop updating or retrieving the
preview text in order to allow
extra time for smooth animation.
Judicious use of off-screen
buffers. Double-buff ering can
be an excellent way of improv-
ing drawing performance and
reducing fragmented drawing
of the screen. However, it must

be applied carefully, as an off -screen buff er is costly in resources.
Ensure the buff er is held for the shortest possible time and is kept to
a minimum size. Using the Scroll WindowEx API can oft en achieve
similar results without the memory overhead of an off -screen buff er.
Measure fi rst and then apply appropriate improvements.
It’s standard performance-analysis practice to ensure you’re
fi xing something that is actually broken. So before changing any
code, make sure you understand where the costs are in your
animation loop by measuring them fi rst, and then apply your
eff ort to the areas that will yield the most signifi cant benefi ts to
your application.

Doing It Managed
Managed code applications that use common controls (such as
LISTBOX, LISTVIEW, WEBVIEW and TREEVIEW) will auto-
matically benefi t from the touch gesture support added to these
controls without any code changes. For applications that have
custom controls, the control code will need to be modifi ed to

In our testing, users preferred a
slightly slower but more consistent
frame rate over a faster but more

variable rate.

http://msdn.microsoft.com/library/ee220917

make use of gestures through the API exposed in the Windows
Mobile 6.5 Developer Tool Kit. Th e tool kit contains C++ head-
ers and samples and is aimed at native code developers. However,
the APIs are designed to be easy to use through a simple interop
from managed code.

Th e trickiest part of implementing gesture support is being able
to receive the new WM_GESTURE message and the WAG anima-
tion messages, because unlike the desktop, the compact framework
doesn’t expose the WndProc handler. To get at these messages
requires the common technique of sub-classing the window to
get a fi rst look at all messages sent to it and fi lter out the ones you
need. Th is can be done by using a native helper DLL or by simply
calling directly to the native APIs. In the sample code available
with this article on the MSDN online site, I’ve included some
examples that show how this might be achieved, along with three
projects showing touch gestures, the Physics Engine and WAG
all in use with managed code. You’ll also fi nd several solutions
available in the community.

Next Steps
To get started with gestures on Windows Mobile 6.5, be sure to
download the Developer Tool Kit from microsoft.com/downloads/

details.aspx?FamilyID=20686a1d-97a8-4f80-bc6a-ae010e085a6e. It includes
emulators and samples to explore many of the possibilities. Also,
the MSDN documentation for this native API is available at
msdn.microsoft.com/library/ee220920. If you’re looking for managed code
solutions, take a look at the sample code attached to this article
on the MSDN page or at Maarten Struys’ blog (dotnetfordevices.com/

forum.html?monthidx=8&yearidx=2009) or Alex Yakhnin’s blog (blogs.msdn.com/

priozersk/archive/2009/08/28/managed-wrapper-of-the-gesture-apis.aspx).
Th ere are also more of my ramblings about touch gestures on

my blog:
• Let’s Talk About Touch (Part 1): blogs.msdn.com/marcpe/

archive/2009/06/29/let-s-talk-about-touch-part1.aspx
• Let’s Talk About Touch (Part 2): blogs.msdn.com/marcpe/

archive/2009/06/29/let-s-talk-about-touch-part2.aspx

MARCUS PERRYMAN has worked at Microsoft for more than 10 years in vari-
ous technical roles, including developer evangelist and developer consultant.
At present, Perryman works as a software design engineer in the Windows
Mobile product group designing and developing the next generation of mobile
operating systems.

THANKS to the following technical experts for reviewing this article:
Tim Benton, David Goon, John Lawrence, Stewart Tootill and
Marcin Stankiewicz

It’s surprising how sensitive
the human eye can be to user

interface latency.

http://www.inishtech.com/redmond
http://microsoft.com/downloads/details.aspx?FamilyID=20686a1d-97a8-4f80-bc6a-ae010e085a6e
http://microsoft.com/downloads/details.aspx?FamilyID=20686a1d-97a8-4f80-bc6a-ae010e085a6e
http://dotnetfordevices.com/forum.html?monthidx=8&yearidx=2009
http://dotnetfordevices.com/forum.html?monthidx=8&yearidx=2009
http://blogs.msdn.com/priozersk/archive/2009/08/28/managed-wrapper-of-the-gesture-apis.aspx
http://blogs.msdn.com/priozersk/archive/2009/08/28/managed-wrapper-of-the-gesture-apis.aspx
http://blogs.msdn.com/marcpe/archive/2009/06/29/let-s-talk-about-touch-part1.aspx
http://blogs.msdn.com/marcpe/archive/2009/06/29/let-s-talk-about-touch-part1.aspx
http://blogs.msdn.com/marcpe/archive/2009/06/29/let-s-talk-about-touch-part2.aspx
http://blogs.msdn.com/marcpe/archive/2009/06/29/let-s-talk-about-touch-part2.aspx
http://msdn.microsoft.com/library/ee220920

CLR INSIDE OUT RON PETRUSHA

msdn magazine24

en-US and fr-FR cultures. Th e example in Figure 1 displays the
following output:

en-US: 1:12:42:30.5660000
fr-FR: 1:12:42:30,5660000

Parsing in the .NET Framework 3.5 and Earlier Versions
In the .NET Framework 3.5 and earlier versions, support for pars-
ing time intervals is handled by the static System.TimeSpan.Parse
and System.TimeSpan.TryParse methods, which support a limited
number of invariant formats. Th e example in Figure 2 parses the
string representation of a time interval in each format recognized by
the method. Th e example in Figure 2 displays the following output:

Converted 12 to 12.00:00:00
Converted 12.16:07 to 12.16:07:00
Converted 12.16:07:32 to 12.16:07:32
Converted 12.16:07:32.449 to 12.16:07:32.4490000
Converted 12.16:07:32.4491522 to 12.16:07:32.4491522
Converted 16:07 to 16:07:00
Converted 16:07:32 to 16:07:32
Converted 16:07:32.449 to 16:07:32.4490000

Formatting and Parsing Time Intervals
in the .NET Framework 4

In the Microsoft .NET Framework 4, the TimeSpan structure has been
enhanced by adding support for both formatting and parsing that
is comparable to the formatting and parsing support for DateTime
values. In this article, I’ll survey the new formatting and parsing features,
as well as provide some helpful tips for working with TimeSpan values.

Formatting in the
.NET Framework 3.5 and Earlier Versions
In the Microsoft .NET Framework 3.5 and earlier versions, the
single formatting method for time intervals is the parameter-
less Time Span.ToString method. The exact format of the
returned string depends on the TimeSpan value. At a minimum, it
includes the hours, minutes and seconds components of a TimeSpan
value. If it is non-zero, the day component is included as well. And if
there is a fractional seconds component, all seven digits of the ticks
component are included. Th e period (“.”) is used as the separator
between days and hours and between seconds and fractional seconds.

Expanded Support for
Formatting in the .NET Framework 4
While the default TimeSpan.ToString method behaves identically
in the .NET Framework 4, there are now two additional overloads.
Th e fi rst has a single parameter, which can be either a standard or
custom format string that defi nes the format of the result string.
Th e second has two parameters: a standard or custom format string,
and an IFormatProvider implementation representing the culture
that supplies formatting information. Th is method, incidentally,
provides the IFormattable implementation for the TimeSpan struc-
ture; it allows TimeSpan values to be used with methods, such as
String.Format, that support composite formatting.

In addition to including standard and custom format strings
and providing an IFormattable implementation, formatted strings
can now be culture-sensitive. Two standard format strings, “g” (the
general short format specifi er) and “G” (the general long format
specifi er) use the formatting conventions of either the current
culture or a specifi c culture in the result string. Th e example formats
in Figure 1 provide an illustration by displaying the result string
for a time interval formatted using the “G” format string and the

This column is based on a pre-release version of the Microsoft .NET Framework 4.
All information is subject to change.

Post your questions on the CLR Team blog at blogs.msdn.com/clrteam.

Visual Basic
Imports System.Globalization

Module Example
 Public Sub Main()
 Dim interval As New TimeSpan(1, 12, 42, 30, 566)
 Dim cultures() As CultureInfo = { New CultureInfo("en-US"),
 New CultureInfo("fr-FR") }
 For Each culture As CultureInfo In cultures
 Console.WriteLine("{0}: {1}", culture, interval.ToString(
 "G", culture))
 Next
 End Sub
End Module

 C#
using System;
using System.Globalization;

public class Example
{
 public static void Main()
 {
 TimeSpan interval = new TimeSpan(1, 12, 42, 30, 566);
 CultureInfo[] cultures = { new CultureInfo("en-US"),
 new CultureInfo("fr-FR") };
 foreach (CultureInfo culture in cultures)
 Console.WriteLine("{0}: {1}", culture, interval.ToString(_
 "G", culture));
 }
}

Figure 1 Time Interval Formatted Using “G” Format String

http://blogs.msdn.com/clrteam

Why is Amyuni PDF
so interesting?

Develop with the fastest PDF
conversion on the market, designed
to perform in multithreaded and
64-bit Windows environments.

License and distribute products
quickly and easily with a PDF
technology that does not rely on
external open-source libraries.

Produce accurate and stable PDF
documents using reliable tools
built by experts with over ten years
of experience.

Let our experienced consultants
help you turn your software
requirements into customized
PDF solutions.

Integrate PDF conversion, creation
and editing into your .NET and
ActiveX applications with just a few
lines of code.

Choose a PDF technology that is
integrated into thousands of
applications behind millions of
desktops worldwide.

High-Performance

OEM LicensesExpertise

Rapid IntegrationProven

Customization

We understand the challenges that come with PDF integration.
From research and development, through design and
implementation, we work with you every step of the way.

Get 30 days of FREE technical support with your trial download!

USA and Canada
Toll Free: 1 866 926 9864
Support: (514) 868 9227

Info: sales@amyuni.com

Europe
Sales: (+33) 1 30 61 07 97
Support: (+33) 1 30 61 07 98

Customizations: management@amyuni.com

All trademarks are property of their respective owners. © 1999-2009 AMYUNI Technologies. All rights reserved.

www.amyuni.com

Now v4.0!

Project1 12/2/09 12:51 PM Page 1

http://www.amyuni.com
mailto:sales@amyuni.com
mailto:management@amyuni.com
http://www.amyuni.com

msdn magazine26 CLR Inside Out

As the output shows, the method can parse a single integer,
which it interprets as the number of days in a time interval (more
about this later). Otherwise, it requires that the string to be parsed
includes at least an hour and a minute value.

Expanded Support for
Parsing in the .NET Framework 4
In the .NET Framework 4 and Silverlight 4, support for parsing
the string representations of time intervals has been enhanced and
is now comparable to support for parsing date and time strings.
Th e TimeSpan structure now includes a new overload for the Parse
and TryParse methods, as well as completely new ParseExact and
TryParseExact methods, each of which has four overloads. Th ese
parsing methods support standard and custom format strings, and
off er some support for culture-sensitive formatting. Two standard
format strings (“g” and “G”) are culture-sensitive, while the remain-
ing standard format strings (“c”, “t” and “T”) as well as all custom
format strings are invariant. Support for parsing and formatting
time intervals will be further enhanced in future releases of the
.NET Framework.

The example in Figure 3 illustrates how you can use the Parse-
Exact method to parse time interval data in the .NET Frame-
work 4. It defines an array of seven custom format strings; if the
string representation of the time interval to be parsed does not

conform to one of these formats, the method fails and throws
an exception.

The example in Figure 3 displays the following output:
Converted '16' to 16:00:00
Converted '1' to 01:00:00
Converted '16:03' to 16:03:00
Converted '1:12' to 01:12:00
Converted '1.13:34:15' to 1.13:34:15
Converted '41237' to 00:00:00.4123700
Converted '0609' to 06:09:00

Instantiating a TimeSpan
with a Single Numeric Value
Interestingly, if these same seven time interval strings were passed
to the TimeSpan.Parse(String) method in any version of the .NET
Framework, they would all parse successfully, but in four cases, they

Visual Basic
Module Example
 Public Sub Main()
 Dim values() As String = {"12", "12.16:07", "12.16:07:32", _
 "12.16:07:32.449", "12.16:07:32.4491522",
_
 "16:07", "16:07:32", "16:07:32.449" }

 For Each value In values
 Try
 Console.WriteLine("Converted {0} to {1}", _
 value, TimeSpan.Parse(value))
 Catch e As OverflowException
 Console.WriteLine("Overflow: {0}", value)
 Catch e As FormatException
 Console.WriteLine("Bad Format: {0}", value)
 End Try
 Next
 End Sub

C#
using System;

public class Example
{
 public static void Main()
 {
 string[] values = { "12", "12.16:07", "12.16:07:32",
 "12.16:07:32.449", "12.16:07:32.4491522",
 "16:07", "16:07:32", "16:07:32.449" };

 foreach (var value in values)
 try {
 Console.WriteLine("Converted {0} to {1}",
 value, TimeSpan.Parse(value));}
 catch (OverflowException) {
 Console.WriteLine("Overflow: {0}", value); }
 catch (FormatException) {
 Console.WriteLine("Bad Format: {0}", value);
 }
 }
}

Figure 2 Parsing Time Interval String in Multiple Formats

Visual Basic
Module modMain
 Public Sub Main()
 Dim formats() As String = { "hh", "%h", "h\:mm", "hh\:mm",
 "d\.hh\:mm\:ss", "fffff", "hhmm" }
 Dim values() As String = { "16", "1", "16:03", "1:12",
 "1.13:34:15", "41237", "0609" }
 Dim interval As TimeSpan

 For Each value In values
 Try
 interval = TimeSpan.ParseExact(value, formats, Nothing)
 Console.WriteLine("Converted '{0}' to {1}",
 value, interval)
 Catch e As FormatException
 Console.WriteLine("Invalid format: {0}", value)
 Catch e As OverflowException
 Console.WriteLine("Overflow: {0}", value)
 Catch e As ArgumentNullException
 Console.WriteLine("No string to parse")
 End Try
 Next
 End Sub
End Module

C#
using System;

public class Example
{
 public static void Main()
 {
 string[] formats = { "hh", "%h", @"h\:mm", @"hh\:mm",
 @"d\.hh\:mm\:ss", "fffff", "hhmm" };
 string[] values = { "16", "1", "16:03", "1:12",
 "1.13:34:15", "41237", "0609" };
 TimeSpan interval;

 foreach (var value in values)
 {
 try {
 interval = TimeSpan.ParseExact(value, formats, null);
 Console.WriteLine("Converted '{0}' to {1}", value,
 interval); }
 catch (FormatException) {
 Console.WriteLine("Invalid format: {0}", value); }
 catch (OverflowException) {
 Console.WriteLine("Overflow: {0}", value); }
 catch (ArgumentNullException) {
 Console.WriteLine("No string to parse");
 }
 }
 }
}

Figure 3 Parsing Time Interval Data with ParseExact Method

msdnmagazine.com

would return a diff erent result. Calling TimeSpan.Parse(String)
with these strings produces the following output:

Converted '16' to 16.00:00:00
Converted '1' to 1.00:00:00
Converted '16:03' to 16:03:00
Converted '1:12' to 01:12:00
Converted '1.13:34:15' to 1.13:34:15
Converted '41237' to 41237.00:00:00
Converted '0609' to 609.00:00:00

Th e major diff erence in the TimeSpan.Parse(String) and Time-
Span.ParseExact(String, String[], IFormatProvider) method calls
lies in the handling of strings that represent integer values. Th e
TimeSpan.Parse(String) method interprets them as days. Th e inter-
pretation of integers by the TimeSpan.ParseExact(String, String[],
IFormatProvider) method depends on the custom format strings
supplied in the string array parameter. In this example, strings that
have only one or two integer digits are interpreted as the number
of hours, strings with four digits are interpreted as the number of

Visual Basic
Module Example
 Public Sub Main()
 Dim formats() As String = { "%h", "hh", "fff", "ffff", "fffff" }
 Dim values() As String = { "3", "17", "192", "3451",
 "79123", "01233" }

 For Each value In values
 Dim interval As TimeSpan
 If TimeSpan.TryParseExact(value, formats, Nothing, interval)
Then
 Console.WriteLine("Converted '{0}' to {1}",
 value, interval.ToString())
 Else
 Console.WriteLine("Unable to parse {0}.", value)
 End If
 Next
 End Sub
End Module

C#
using System;

public class Example
{
 public static void Main()
 {
 string[] formats = { "%h", "hh", "fff", "ffff", "fffff" };
 string[] values = { "3", "17", "192", "3451", "79123", "01233" };

 foreach (var value in values)
 {
 TimeSpan interval;
 if (TimeSpan.TryParseExact(value, formats, null, out interval))
 Console.WriteLine("Converted '{0}' to {1}",
 value, interval.ToString());
 else
 Console.WriteLine("Unable to parse {0}.", value);
 }
 }
}

Figure 4 Representations of Integers with 1 to 5 Digits

Support for parsing the
string representations of time
intervals has been enhanced.

http://www.amyuni.com
www.msdnmagazine.com

msdn magazine28 CLR Inside Out

hours and minutes, and strings that have fi ve integer digits are in-
terpreted as a fractional number of seconds.

In many cases, .NET Framework applications receive strings
containing time interval data in an arbitrary format (such as

integers representing a number of milliseconds, or integers rep-
resenting a number of hours). In previous versions of the .NET
Framework, it was necessary to manipulate this data so that it
would be in an acceptable format before passing it to the

Visual Basic
Module Example
 Public Sub Main()
 Dim values() As String = { "37:16:45.33", "0:128:16.324",
 "120:08" }
 Dim interval As TimeSpan
 For Each value In values
 Try
 interval = ParseIntervalWithoutOverflow(value)
 Console.WriteLine("'{0}' --> {1}", value, interval)
 Catch e As FormatException
 Console.WriteLine("Unable to parse {0}.", value)
 End Try
 Next
 End Sub

 Private Function ParseIntervalWithoutOverflow(value As String)
 As TimeSpan
 Dim interval As TimeSpan
 If Not TimeSpan.TryParse(value, interval) Then
 Try
 ' Handle failure by breaking string into components.
 Dim components() As String = value.Split({"."c, ":"c })
 Dim offset As Integer = 0
 Dim days, hours, minutes, seconds, milliseconds As Integer
 ' Test whether days are present.
 If value.IndexOf(".") >= 0 AndAlso
 value.IndexOf(".") < value.IndexOf(":") Then
 offset = 1
 days = Int32.Parse(components(0))
 End If
 ' Call TryParse to parse values so no exceptions result.
 hours = Int32.Parse(components(offset))
 minutes = Int32.Parse(components(offset + 1))
 If components.Length >= offset + 3 Then
 seconds = Int32.Parse(components(offset + 2))
 End If
 If components.Length >= offset + 4 Then
 milliseconds = Int32.Parse(components(offset + 3))
 End If
 ' Call constructor.
 interval = New TimeSpan(days, hours, minutes,
 seconds, milliseconds)
 Catch e As FormatException
 Throw New FormatException(
 String.Format("Unable to parse '{0}'"), e)
 Catch e As ArgumentOutOfRangeException
 Throw New FormatException(
 String.Format("Unable to parse '{0}'"), e)
 Catch e As OverflowException
 Throw New FormatException(
 String.Format("Unable to parse '{0}'"), e)
 Catch e As ArgumentNullException
 Throw New ArgumentNullException("value cannot be null.",
 e)
 End Try
 End If
 Return interval
 End Function
End Module

C#
using System;

public class Example
{
 public static void Main()
 {
 string[] values = { "37:16:45.33", "0:128:16.324", "120:08" };
 TimeSpan interval;

 foreach (var value in values)
 {
 try {
 interval = ParseIntervalWithoutOverflow(value);
 Console.WriteLine("'{0}' --> {1}", value, interval);
 }
 catch (FormatException) {
 Console.WriteLine("Unable to parse {0}.", value);
 }
 }
 }

 private static TimeSpan ParseIntervalWithoutOverflow(string value)
 {
 TimeSpan interval;
 if (! TimeSpan.TryParse(value, out interval))
 {
 try {
 // Handle failure by breaking string into components.
 string[] components = value.Split(
 new Char[] {'.', ':' });

 int offset = 0;
 int days = 0;
 int hours = 0;
 int minutes = 0;
 int seconds = 0;
 int milliseconds = 0;
 // Test whether days are present.
 if (value.IndexOf(".") >= 0 &&
 value.IndexOf(".") < value.IndexOf(":"))
 {
 offset = 1;
 days = Int32.Parse(components[0]);
 }
 // Call TryParse to parse values so no exceptions result.
 hours = Int32.Parse(components[offset]);
 minutes = Int32.Parse(components[offset + 1]);
 if (components.Length >= offset + 3)
 seconds = Int32.Parse(components[offset + 2]);

 if (components.Length >= offset + 4)
 milliseconds = Int32.Parse(components[offset + 3]);

 // Call constructor.
 interval = new TimeSpan(days, hours, minutes,
 seconds, milliseconds);
 }
 catch (FormatException e) {
 throw new FormatException(
 String.Format("Unable to parse '{0}'"), e);
 }
 catch (ArgumentOutOfRangeException e) {
 throw new FormatException(
 String.Format("Unable to parse '{0}'"), e);
 }
 catch (OverflowException e)
 {
 throw new FormatException(
 String.Format("Unable to parse '{0}'"), e);
 }
 catch (ArgumentNullException e)
 {
 throw new ArgumentNullException("value cannot be null.",
 e);
 }
 }
 return interval;
 }
}

Figure 5 Handling Nonstandard Time Interval Strings

Project3 10/29/09 9:20 AM Page 1

http://www.aspose.com

msdn magazine30 CLR Inside Out

Time Span.Parse method. In the .NET Framework 4, you can use
custom format strings to define the interpretation of time
interval strings that contain only integers, and preliminary
manipulation of string data is not necessary. The example in
Figure 4 illustrates this by providing different representations
for integers that have from one to five digits.

Th e example in Figure 4 displays the following output:
Converted '3' to 03:00:00
Converted '17' to 17:00:00
Converted '192' to 00:00:00.1920000
Converted '3451' to 00:00:00.3451000
Converted '79123' to 00:00:00.7912300
Converted '01233' to 00:00:00.0123300

Handling Overfl owExceptions When
Parsing Time Intervals
Th ese new TimeSpan parsing and formatting features introduced
in the .NET Framework 4 retain one behavior that some custom-
ers have found inconvenient. For backward compatibility, the
TimeSpan parsing methods throw an Overfl owException under
the following conditions:

• If the value of the hours component exceeds 23.
• If the value of the minutes component exceeds 59.
• If the value of the seconds component exceeds 59.

Th ere are a number of ways to handle this. Instead of calling the
TimeSpan.Parse method, you could use the Int32.Parse method to
convert the individual string components to integer values, which
you can then pass to one of the TimeSpan class constructors.
Unlike the TimeSpan parsing methods, the TimeSpan construc-
tors do not throw an Overfl owException if the hours, minutes or
seconds value passed to the constructor is out of range.

Th is is an acceptable solution, although it does have one limita-
tion: It requires that all strings be parsed and converted to integers
before calling the TimeSpan constructor. If most of the data to be
parsed does not overfl ow during the parsing operation, this
solution involves unnecessary processing.

Another alternative is to try to parse the data, and then handle
the Overfl owException that is thrown when individual time in-
terval components are out of range. Again, this is an acceptable
solution, although unnecessary exception handling in an applica-
tion can be expensive.

Th e best solution is to use the TimeSpan.TryParse method to
initially parse the data, and then to manipulate the individual time
interval components only if the method returns false. If the parse
operation fails, you can use the String.Split method to separate the
string representation of the time interval into its individual com-
ponents, which you can then pass to the TimeSpan(Int32, Int32,
Int32, Int32, Int32) constructor. Th e example in Figure 5 provides
a simple implementation:

As the following output shows, the example in Figure 5 successfully
handles hour values that are greater than 23, as well as minute and
second values that are greater than 59:

'37:16:45.33' --> 1.13:16:45.0330000
'0:128:16.324' --> 02:08:16.3240000
'120:08' --> 5.00:08:00

Application Compatibility
Paradoxically, enhanced formatting support for TimeSpan values
in the .NET Framework 4 has broken some applications that for-
matted TimeSpan values in previous versions of the .NET Frame-
work. Th e following code, for example, executes normally in the
.NET Framework 3.5, but throws a FormatException in the .NET
Framework 4:

 string result = String.Format("{0:r}", new TimeSpan(4, 23, 17));

To format each argument in its parameter list, the String.Format
method determines whether the object implements IFormattable.
If it does, it calls the object’s IFormattable.ToString implementa-
tion. If it does not, it discards any format string supplied in the
index item and calls the object’s parameterless ToString method.

In the .NET Framework 3.5 and earlier versions, TimeSpan does
not implement IFormattable, nor does it support format strings.
Th erefore, the “r” format string is ignored, and the parameterless
TimeSpan.ToString method is called. In the .NET Framework 4,
on the other hand, TimeSpan.ToString(String, IFormatProvider)
is called and passed the unsupported format string, which causes
the exception.

If possible, this code should be modifi ed by calling the param-
eterless TimeSpan.ToString method, or by passing a valid format
string to a formatting method. If that is not possible, however, a
<TimeSpan_LegacyFormatMode> element can be added to the
application’s confi guration fi le so that it resembles the following:

<?xml version ="1.0"?>
<configuration>
 <runtime>
 <TimeSpan_LegacyFormatMode enabled="true"/>
 </runtime>
</configuration>

By setting its enabled attribute to true, you can ensure that
Time Span uses legacy formatting behavior.

RON PETRUSHA is a programming writer on the .NET Framework Base Class
Library team. He is also the author of numerous programming books and articles
on Windows programming, Web programming and programming with VB.NET.

THANKS to the following technical experts for reviewing this article:
Melitta Andersen and Josh Free

Paradoxically, enhanced
formatting support for
TimeSpan values in the

.NET Framework 4 has broken
some applications that

formatted TimeSpan values in
previous versions.

Project3 11/5/09 2:54 PM Page 1

http://www.xceed.com

MA N AGED EX T ENS IB I L I T Y FR A M EWORK

Building Composable
Apps in .NET 4 with the
Managed Extensibility
Framework

With the upcoming Microsoft .NET Framework 4,
you’ll fi nd an exciting new technology at your doorstep that will
greatly simplify your application development. If you’ve struggled
with how to design applications that are easier to maintain and
extend, keep reading.

The Managed Extensibility Framework (MEF) is a new library
shipping in the .NET Framework 4 and in Silverlight 4 that sim-
plifies the design of composable systems that can be extended
by third parties after they have been deployed. MEF opens up
your applications, allowing new functionality to be incremen-
tally introduced by application developers, framework authors
and third-party extenders.

This article is based on a pre-release version of the Microsoft
.NET Framework 4. All information is subject to change.

This article discusses:
• The Attributed Programming Model

• Decoupling implementation with an interface

• Contract assemblies

• Importing lazy exports and accessing metadata

• Recomposition

• Stable composition, rejection and diagnostics

• MEF in Silverlight 4

Technologies discussed:
Managed Extensibility Framework, .NET Framework 4,
Silverlight 4, IronRuby

Glenn Block

Why We Built It
Several years ago, within Microsoft , a number of groups were
working to fi nd solutions to a problem—how to build applica-
tions from reusable components that can be discovered, reused
and composed dynamically:

• Visual Studio 2010 was building a new extensible code editor.
Th e editor’s core capabilities, as well as third-party capabilities,
were all to be deployed as binaries that would be discovered
at runtime. One of the core requirements was to support la-
zily loading extensions in order to improve startup time and
memory consumption.

• “Oslo” introduced “Intellipad,” a new extensible text editor for
working with MEF. In Intellipad, plugins were to be authored
in IronPython.

• Acropolis was delivering a framework for building composite
applications. Th e Acropolis runtime discovered application
component “parts” at runtime and provided those parts with
services in a loosely coupled manner. Acropolis made heavy
use of XAML for component authoring.
Th is problem was not specifi c to Microsoft . Customers have

been implementing their own custom extensibility solutions for
ages. Here was clear opportunity for the platform to step in and
provide a more general-purpose solution to help both Microsoft
and customers.

Did We Need Something New?
MEF is not by any means the fi rst solution in this problem space.
Th ere have been many proposed solutions—a long list of ventures

msdn magazine32

33February 2010msdnmagazine.com

that cross platform boundaries and in-
clude eff orts like EJB, CORBA, Eclipse’s
OSGI implementation and Spring on the
Java side. On Microsoft ’s platform, there
are the Component model and System.
Addin within the .NET Framework itself.
And there are several open-source solu-
tions, including SharpDevelop’s SODA
architecture and Inversion of Control
containers like Castle Windsor, Struc-
ture Map and patterns & practices’ Unity.

With all the existing approaches, why
come up with something new? We real-
ized none of our current solutions were
ideal for general third-party extensibility. Th ey were either too
heavyweight for general use or required too much eff ort on the
part of either the host or the extension developer. MEF represents
the culmination of learning from each of these solutions, and an
attempt to address the pain points just mentioned.

Let’s take a look at MEF’s core concepts, illustrated in Figure 1.

Concepts
At the heart of MEF are a few essential concepts:
Composable part (or, simply, part)—A part provides servic-
es to other parts and consumes services provided by other parts.
Parts in MEF can come from anywhere, from within the applica-
tion or externally; from an MEF perspective, it makes no diff erence.
Export—An export is a service that a part provides. When a part
provides an export, it is said that the part exports it. For example, a
part may export a logger, or in the case of Visual Studio, an editor
extension. Parts can provide multiple exports, though most parts
provide a single export.
Import—An import is a service that a part consumes. When a part
consumes an import, the part imports it. Parts can import single
services, such as the logger, or import multiple services, such as
an editor extension.
Contracts—A contract is an identifi er for an export or an im-
port. An exporter specifi es a string contract that it provides, and
an importer specifi es the contract that it needs. MEF derives con-
tract names from the types that are being exported and imported,
so in most cases you don’t have to think about it.
Composition—Parts are composed by MEF, which instantiates
them and then matches up exporters to importers.

Programming Models—the Face(s) of MEF
Developers consume MEF through a programming model. A pro-
gramming model provides a means to declare components as MEF
parts. Out of the box, MEF provides an attributed programming
model, which will be the main focus of this article. Th at model is
just one of many possible programming models that MEF enables.
MEF’s core API is completely agnostic to attributes.

Diving into the Attributed Programming Model
In the attributed programming model, parts (known as attributed
parts) are defi ned with a set of .NET attributes, which live in the

System.ComponentModel.Composition
namespace. In the sections that follow, I’ll
explore building an extensible Windows
Presentation Foundation (WPF) sales or-
der management application using this
model. Th is application allows custom-
ers to add new, customized views within
their environments simply by deploying
a binary to the bin folder. I’ll look at how
this can be implemented through MEF.
I’ll incrementally improve the design as
I go, and explain more about MEF’s ca-
pabilities and what the attributed pro-
gramming model provides in the process.

Exporting a Class
Th e order management application allows plugging in new views.
To export something to MEF, you export it by using the Export
attribute as shown here:

[Export]
public partial class SalesOrderView : UserControl
{
public SalesOrderView()
 {
InitializeComponent();
 }
}

Th e above part exports the SalesOrderView contract. By default,
the Export attribute uses the concrete type of the member (in this
case, the class) as the contract. You can also explicitly specify the
contract by passing a parameter to the attribute’s constructor.

Importing Through Properties and Fields
Attributed parts can express the things they need by using the
import attribute on a property or fi eld. Th e application exports a
ViewFactory part, which other parts can use to get to views. Th at
ViewFactory imports SalesOrderView using a property import.
Importing a property simply means decorating a property with
an Import attribute:

[Export]
public class ViewFactory
{
 [Import]
 public SalesOrderView OrderView { get; set; }
}

Importing Through Constructors
Parts can also import through constructors (commonly known
as constructor injection) by using the ImportingConstructor at-
tribute as shown below. When using an importing constructor,
MEF assumes all parameters are imports, making the import at-
tribute unnecessary:

[Export]
public class ViewFactory
{
 [ImportingConstructor]
 public ViewFactory(SalesOrderView salesOrderView)
{
}
}

In general, importing via constructors rather than properties is a
matter of preference, though there are times when it’s appropriate to

Composable
Part

Composition

Export
Import
Contract

Contract

Contract

Contract

Import

Export

Figure 1 Core Concepts in the Managed
Extensibility Framework

www.msdnmagazine.com

msdn magazine34 Managed Extensibility Framework

use property imports, particularly when there are parts that aren’t
instantiated by MEF, as in the WPF App example. Recomposition
is also not supported on constructor parameters.

Composition
With SalesOrderView and ViewFactory in place, you can now start
composition. MEF parts don’t automatically get discovered or cre-
ated. Instead, you need to write some bootstrapping code that will
enact composition. A common place to do this is in your applica-
tion’s entry point, which in this case is the App class.

To bootstrap MEF involves a few steps:
• Add imports of the contracts you need the container to create.
• Create a catalog that MEF uses to discover parts.
• Create a container that composes instances of parts.
• Compose by calling the Composeparts method on the con-

tainer and passing in the instance that has the imports.
As you can see here, I added a ViewFactory import on the App

class. Th en I created a DirectoryCatalog pointing to the bin folder
and created a container that uses the catalog. Finally, I called Com-
poseparts, which caused an App instance to be composed and the
ViewFactory import to be satisfi ed:

public partial class App : Application
{
 [Import]
public ViewFactory ViewFactory { get; set; }

public App()
 {
this.Startup += new StartupEventHandler(App_Startup);
 }

void App_Startup(object sender, StartupEventArgs e)
 {
var catalog = new DirectoryCatalog(@".\");
var container = new CompositionContainer(catalog);
container.Composeparts(this);
 }
}

During composition, the container will create the ViewFactory
and satisfy its SalesOrderView import. This will result in Sales-
OrderView being created. Finally, the Application class will have
its ViewFactory import satisfied. In this way, MEF has assembled
the entire object graph based on declarative information, rather
than manually requiring imperative code to do the assembly.

Exporting Non-MEF Items to
MEF Through Properties
When integrating MEF into an existing application, or with other
frameworks, you will oft en fi nd non-MEF related class instances
(meaning they are not parts) that you will want to make available
to importers. Th ese may be sealed framework types such as System.
String; application-wide singletons such as Application.Current;
or instances retrieved from a factory, such as a logger instance re-
trieved from Log4Net.

To support this, MEF allows property exports. To use property
exports, you create an intermediary part with a property that is
decorated with an export. Th at property is essentially a factory
and executes whatever custom logic is necessary to retrieve the
non-MEF value. In the following code sample, you can see that
Loggerpart exports a Log4Net logger, allowing other parts such

as the App to import it rather than depending on accessing the
static accessor method:

public class Loggerpart
{
 [Export]
public ILog Logger
 {
get { return LogManager.GetLogger("Logger"); }
 }
}

Property exports are like Swiss Army knives in their function-
ality, allowing MEF to play well with others. You will fi nd them
extremely useful for integrating MEF into your existing apps and
for talking to legacy systems.

Decoupling Implementation with an Interface
Going back to the SalesOrderView example, a tightly coupled rela-
tionship has been formed between ViewFactory and SalesOrder-
View. Th e factory expects a concrete SalesOrderView that limits
extensibility options as well as testability of the factory itself. MEF
allows imports to be decoupled from the exporter’s implementa-
tion by using an interface as the contract:

public interface ISalesOrderView{}

[Export(typeof(ISalesOrderView))]
public partial class SalesOrderView : UserControl, ISalesOrderView
{
 ...
}

[Export]
public class ViewFactory
{
 [Import]
ISalesOrderView OrderView{ get; set; }
}

In the preceding code, I changed SalesOrderView to implement
ISalesOrderView and explicitly export it. I also changed the
factory on the importer side to import ISalesOrderView. Notice
the importer doesn’t have to specify the type explicitly, as MEF can
derive it from the property type, which is ISalesOrderView.

Th is raises the question of whether ViewFactory should also
implement an interface like IViewFactory. Th is isn’t a requirement,
though it may make sense for mocking purposes. In this case I’m
not expecting anyone to replace ViewFactory, and it’s designed in
a testable fashion, so it’s fi ne. You can have multiple exports on a
part in order to have the part imported under multiple contracts.
SalesOrderView, for example, can export both UserControl and
ISalesOrderView by having an additional export attribute:

[Export (typeof(ISalesOrderView))]
[Export (typeof(UserControl))]
public partial class SalesOrderView : UserControl, ISalesOrderView
{
 ...
}

Contract Assemblies
As you start to create contracts, you will need a way to deploy those
contracts to third parties. A common way to do this is by having
a contract assembly that contains interfaces for the contracts that
will be implemented by extenders. Th e contract assembly becomes
a form of SDK that the parts will reference. A common pattern is to
name the contract assembly as the application name + .Contracts,
such as SalesOrderManager.Contracts.

35February 2010msdnmagazine.com

Importing Many Exports of the Same Contract
Currently ViewFactory imports only a single view. Hardcoding
a member (property param) for each view works for a very small
number of predefi ned types of views that aren’t changing frequently.
However, with such an approach, adding new views requires the
factory to be recompiled.

If many types of views are expected, MEF off ers a better approach.
Instead of using a specifi c view interface, you can create a generic
IView interface that all views export. Th e factory then imports a
collection of all available IViews. To import a collection in the at-
tributed model, use the ImportMany attribute:

[Export]
public class ViewFactory
{
 [ImportMany]
IEnumerable<IView> Views { get; set; }
}

[Export(typeof(IView))]
public partial class SalesOrderView : UserControl, IView
{
}
//in a contract assembly
public interface IView{}

Here you can see that ViewFactory now imports a collection
of IView instances rather than a specifi c view. SalesOrder imple-
ments IView and exports it rather than ISalesOrderView. With this
refactoring, ViewFactory can now support an open set of views.

MEF also supports importing using concrete collections such
as ObservableCollection<T> or List<T>, as well as custom collec-
tions that provide a default constructor.

Controlling Part Creation Policy
By default, all part instances in the container are singletons, thus
they are shared by any parts that import them within the contain-
er. For this reason, all importers of SalesOrderView and ViewFac-
tory will get the same instance. In many cases this is desirable, as
it replaces having static members that other components depend
on. However, sometimes it’s necessary for each importer to get its
own instance, for example, to allow multiple SalesOrderView in-
stances to be viewed on the screen at the same time.

Part creation policy in MEF can be one of three values: Creation-
Policy.Shared, CreationPolicy.NonShared or CreationPolicy.Any.
To specify creation policy on a part, you decorate it with the part-
CreationPolicy attribute, as shown here:

[partCreationPolicy(CreationPolicy.NonShared)]
[Export(typeof(ISalesOrderView))]
public partial class SalesOrderView : UserControl, ISalesOrdderView
{
public SalesOrderView()
 {
 }
}

PartCreationPolicy can also be specifi ed on the importer side
by setting the RequiredCreationPolicy property on the import.

Distinguishing Exports with Metadata
ViewFactory now works with an open set of views, but I have no
way to distinguish one view from another. I could add a member
to IView called ViewType, which the view would provide, and then
fi lter against that property. An alternative is to use MEF’s export
metadata facilities to annotate the view with its ViewType. Using

the metadata provides an additional advantage of allowing the
view’s instantiation to be delayed until it’s needed, which can con-
serve resources and improve performance.

Defi ning Export Metadata
To defi ne metadata on an export, you use the ExportMetadata attri-
bute. Below, SalesOrderView has been changed to export an IView
marker interface as its contract. It then adds additional metadata
of “ViewType” so that it can be located among other views that
share the same contract:

[ExportMetadata("ViewType", "SalesOrder")]
[Export(typeof(IView)]
public partial class SalesOrderView : UserControl, IView
{
}

ExportMetadata has two parameters, a key that is a string and
a value of type object. Using magic strings as in the preceding ex-
ample can be problematic because this isn’t compile-safe. Instead
of a magic string, we can supply a constant for the key and an enum
for the value:

[ExportMetadata(ViewMetadata.ViewType, ViewTypes.SalesOrder)]
[Export(typeof(IView)]
public partial class SalesOrderView : UserControl, IView
{
 ...
}
//in a contract assembly
public enum ViewTypes {SalesOrderView}

public class ViewMetadata
{
public const string ViewType = "ViewType";
}

Using the ExportMetadata attribute provides a lot of fl exibility,
but there are several caveats when using it:

• Metadata keys aren’t discoverable in the IDE. Th e part author
must know which metadata keys and types are valid for the
export.

• Th e compiler won’t validate metadata to ensure it’s correct.
• ExportMetadata adds more noise to the code, hiding the intent.

MEF provides a solution to address the above issues: custom
exports.

Custom Export Attributes
MEF allows the creation of custom exports that include their own
metadata. Creating a custom export involves creating a derived
ExportAttribute that also specifi es metadata. We can use custom
exports to create an ExportView attribute that includes metadata
for ViewType:

[MetadataAttribute]
[AttributeUsage(AttributeTargets.Class, AllowMultiple=false)]
public class ExportViewAttribute : ExportAttribute {
public ExportViewAttribute()
:base(typeof(IView))
 {}

public ViewTypes ViewType { get; set; }
}

ExportViewAttribute specifi es that it exports IView by calling
Export’s base constructor. It’s decorated with a MetadataAttribute,
which specifi es that the attribute provides metadata. Th is attribute
tells MEF to look at all of the public properties and create associ-
ated metadata on the export using the property name as the key.
In this case, the only metadata is ViewType.

www.msdnmagazine.com

msdn magazine36 Managed Extensibility Framework

Th e last important thing to note about the ExportView attribute
is that it’s decorated with an AttributeUsage attribute. Th is speci-
fi es that the attribute is valid only on classes and that only a single
ExportView attribute can be present.

In general, AllowMultiple should be set to false; if it’s true, the
importer will be passed an array of values rather than a single value.
AllowMultiple should be left as true when there are multiple exports
with diff erent metadata of the same contract on the same member.

Applying the new ExportViewAttribute to the SalesOrderView
now results in the following:

[ExportView(ViewType = ViewTypes.SalesOrder)]
public partial class SalesOrderView : UserControl, IView
{
}

As you can see, custom exports ensure the correct metadata
is provided for a particular export. Th ey also reduce noise in the
code, are more discoverable through IntelliSense and better express
intent through being domain-specifi c.

Now that metadata has been defi ned on the view, the View-
Factory can import it.

Importing Lazy Exports and Accessing Metadata
To allow the accessing of metadata, MEF leverages a new API of
the .NET Framework 4, System.Lazy<T>. It allows delaying the
instantiation of an instance until the value property of the Lazy is
accessed. MEF further extends Lazy<T> with Lazy<T,TMetadata>
to allow accessing export metadata without instantiating the
underlying export.

TMetadata is a metadata view type. A metadata view is an inter-
face that defi nes read-only properties that correspond to keys in
the exported metadata. When the metadata property is accessed,
MEF will dynamically implement TMetadata and will set the val-
ues based on the provided metadata from the export.

Th is is how ViewFactory looks when the View property is changed
to import using Lazy<T,TMetadata>:

[Export]
public class ViewFactory
{
 [ImportMany]
IEnumerable<Lazy<IView, IViewMetadata>> Views { get; set; }
}

public interface IViewMetadata
{
ViewTypes ViewType {get;}
}

Once a collection of lazy exports with metadata has been im-
ported, you can use LINQ to fi lter against the set. In the following
code snippet, I’ve implemented a GetViews method on ViewFac-
tory to retrieve all views of the specifi ed type. Notice it accesses the
Value property in order to manufacture the real view instances only
for the views that match the fi lter:

[Export]
public class ViewFactory
{
 [ImportMany]
IEnumerable<Lazy<IView, IViewMetadata>> Views { get; set; }

public IEnumerable<View> GetViews(ViewTypesviewType) {
return Views.Where(v=>v.Metadata.ViewType.Equals(viewType)).Select(v=>v.
Value);
 }
}

With these changes, ViewFactory now discovers all views that
are available at the time the factory is composed by MEF. If new
implementations appear in the container or catalogs aft er that ini-
tial composition, they won’t be seen by the ViewFactory, as it was
already composed. Not only that, but MEF will actually prevent the
views from being added to the catalog by throwing a Composition-
Exception—that is, unless recomposition is enabled.

Recomposition
Recomposition is a feature of MEF that allows parts to automati-
cally have their imports updated as new matching exports appear
in the system. One scenario where recomposition is useful is for
downloading parts from a remote server. SalesOrderManager can
be changed so that when it starts up, it initiates a download for
several optional views. As the views show up, they will appear in
the view factory. To make the ViewFactory recomposable, we set
the AllowRecomposition property on the ImportMany attribute
of the Views property to true, as shown here:

[Export]
public class ViewFactory
{
[ImportMany(AllowRecomposition=true)]
IEnumerable<Lazy<IView, IViewMetadata>> Views { get; set; }

public IEnumerable<View>GetViews(ViewTypesviewType) {
return Views.Where(v=>v.Metadata.ViewType.Equals(viewType)).Select(v=>v.
Value);
 }
}

When recomposition occurs, the Views collection will instantly be
replaced with a new collection that contains the updated set of views.

With recomposition enabled, the app can download additional
assemblies from the server and add them to the container. You can
do this through MEF’s catalogs. MEF off ers several catalogs, two of
which are recomposable. DirectoryCatalog, which you have already
seen, is one that is recomposed by calling its Refresh method. An-
other recomposable catalog is AggregateCatalog, which is a catalog
of catalogs. You add catalogs to it by using the Catalogs collection
property, which starts recomposition. Th e last catalog I’ll use is an
AssemblyCatalog, which accepts an assembly upon which it then
builds a catalog. Figure 2 shows a sample illustrating how you can
use these catalogs together for dynamic download.

Th e container in Figure 2 is created with an Aggregate Catalog.
It then has a DirectoryCatalog added to it in order to grab the
local parts in the bin folder. Th e aggregate catalog is passed to the
DownloadAssemblies method, which asynchronously downloads
assemblies and then calls AddAssemblies. Th at method creates a
new AggregateCatalog, to which it adds AssemblyCatalogs for
each download assembly. AddAssemblies then adds the Aggregate-
Catalog containing the assemblies for the main aggregate. Th e
reason it adds in this fashion is to have recomposition occur in one
shot, rather than over and over again, which is what would happen
if we added assembly catalogs directly.

When recomposition occurs, the collection is immediately up-
dated. Depending on the collection property type, the result is
diff erent. If the property is of type IEnumerable<T>, it’s replaced
with a new instance. If it’s a concrete collection that inherits from
List<T> or ICollection, then MEF will call Clear and then Add for
each item. In either case, it means you will have to consider thread-

You’ve got the data, but time, budget and staff
constraints can make it hard to present that valuable
information in a way that will impress. With Infragistics’
NetAdvantage for Silverlight Data Visualization, you
can create Web-based data visualizations and
dashboard-driven applications on Microsoft Silverlight
(and coming soon for WPF) that will not only impress
decision makers, it actually empowers them. Go to
infragistics.com/sldv today and get inspired to create
killer apps.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

GeospatialMaps

Silverlight
Pivot
Grids

Fast
DataCharts

Untitled-1 1 1/11/10 11:15 AM

http://www.infragistics.com/sldv

msdn magazine38 Managed Extensibility Framework

safety when using Recomposition. Recomposition not only relates
to adds, it also relates to removals. If catalogs are removed from the
container, those parts will also be removed .

Stable Composition, Rejection and Diagnostics
Sometimes a part may specify an import that is missing, as it isn’t
present in the catalog. When this happens, MEF prevents the part
missing the dependency—or anything that depends on it—from
being discovered. MEF does this in order to stabilize the system and
prevent runtime failures that would surely occur if the part were created.

Here, SalesOrderView has been changed to import an ILogger
though there’s no logger instance present:

[ExportView(ViewType = ViewTypes.SalesOrder)]
public partial class SalesOrderView : UserControl, IView
{
[Import]
public ILogger Logger { get; set; }
}

Because there isn’t an ILogger export available, SalesOrderView’s
export won’t appear to the container. Th is won’t throw an excep-
tion; instead SalesOrderView will just be ignored. If you check
ViewFactory’s Views collection, it will be empty.

Rejection will also happen in cases where there are multiple
exports available for a single import. In those cases, the part that
imports the single export is rejected:

[ExportView(ViewType = ViewTypes.SalesOrder)]
public partial class SalesOrderView : UserControl, IView
{
[Import]
public ILogger Logger { get; set; }
}
 [Export(typeof(ILogger))]
public partial class Logger1 : ILogger
{
}
 [Export(typeof(ILogger))]
public partial class Logger2 : ILogger
{
}

In the preceding example, SalesOrderView will be rejected be-
cause there are multiple ILogger implementations, but a single
implementation is imported. MEF does provide facilities for al-
lowing a default export in the presence of multiples. For more on
this, see codebetter.com/blogs/glenn.block/archive/2009/05/14/customizing-

container-behavior-part-2-of-n-defaults.aspx.
You might ask why MEF doesn’t create SalesOrderView and throw

an exception. In an open extensible system, if MEF throws an excep-
tion, it would be very diffi cult for the application to handle it, or to have
the context to know what to do, because the part might be missing or
the import might be nested very deeply in the composition. Without
proper handling, the app would be in an invalid state and unusable. MEF
rejects the part, thus ensuring application stability is maintained. For
more on stable composition, see: blogs.msdn.com/gblock/archive/2009/08/02/

stable-composition-in-mef-preview-6.aspx.

Diagnosing Rejection
Rejection is a very powerful feature, but it can sometimes be dif-
fi cult to diagnose, especially when the entire dependency graph is
rejected. In the fi rst early example, ViewFactory directly imports a
SalesOrderView. Let’s say MainWindow imported ViewFactory and
SalesOrderView is rejected. Th en ViewFactory and MainWindow

will also get rejected. You might be scratching your head if you see
this occur, as you know that MainWindow and ViewFactory actually
are present; the reason for the rejection is a missing dependency.

MEF doesn’t leave you in the dark. To assist with diagnosing this
problem, it provides tracing. In the IDE, all rejection messages are
traced to the output window, though they can also be traced to any
valid trace listener. For example, when the app attempts to import
MainWindow, the trace messages in Figure 3 will be outputted.

Th e trace output shows the root cause of the problem: SalesOrder-
View requires an ILogger and one cannot be located. We can then see
that rejecting it caused the factory to be rejected, and ultimately the
MainWindow.

Inspecting Parts in the Debugger
You can go one step further and actually inspect the available parts
in the catalog, which I’ll discuss in the section on hosting. In Figure
4 you can see in the watch window the available parts (in the green
circles) as well as the required ILogger import (in the blue circle).

Diagnosing Rejection at the Command Line
One of the goals of MEF was to support static analyzability,
thus allowing composition to be analyzed outside of the runtime

void App_Startup(object sender, StartupEventArgs e)
{
var catalog = new AggregateCatalog();
catalog.Catalogs.Add(newDirectoryCatalog((@"\.")));
var container = new CompositionContainer(catalog);
container.Composeparts(this);
base.MainWindow = MainWindow;
this.DownloadAssemblies(catalog);
}

private void DownloadAssemblies(AggregateCatalog catalog)
{
//asynchronously downloads assemblies and calls AddAssemblies
}

private void AddAssemblies(Assembly[] assemblies, AggregateCatalog catalog)
{
var assemblyCatalogs = new AggregateCatalog();
foreach(Assembly assembly in assemblies)
assemblyCatalogs.Catalogs.Add(new AssemblyCatalog(assembly));
catalog.Catalogs.Add(assemblyCatalogs);
}

Figure 2 Using MEF Catalogs for Dynamic Download

System.ComponentModel.Composition Warning: 1 : The
ComposablepartDefinition 'Mef_MSDN_Article.SalesOrderView' has been
rejected. The composition remains unchanged. The changes were rejected
because of the following error(s): The composition produced a single
composition error. The root cause is provided below. Review the
CompositionException.Errors property for more detailed information.

1) No valid exports were found that match the constraint
'((exportDefinition.ContractName == "Mef_MSDN_Article.ILogger") AndAlso
(exportDefinition.Metadata.ContainsKey("ExportTypeIdentity") AndAlso
"Mef_MSDN_Article.ILogger".Equals(exportDefinition.Metadata.get_
Item("ExportTypeIdentity"))))', invalid exports may have been rejected.

Resulting in: Cannot set import 'Mef_MSDN_Article.SalesOrderView.Logger
(ContractName="Mef_MSDN_Article.ILogger")' on part 'Mef_MSDN_Article.
SalesOrderView'.
Element: Mef_MSDN_Article.SalesOrderView.logger (ContractName="Mef_MSDN_
Article.ILogger") -->Mef_MSDN_Article.SalesOrderView -->TypeCatalog
(Types='Mef_MSDN_Article.MainWindow, Mef_MSDN_Article.SalesOrderView,
...').

Figure 3 MEF Trace Messages

http://codebetter.com/blogs/glenn.block/archive/2009/05/14/customizingcontainer-behavior-part-2-of-n-defaults.aspx
http://codebetter.com/blogs/glenn.block/archive/2009/05/14/customizingcontainer-behavior-part-2-of-n-defaults.aspx
http://blogs.msdn.com/gblock/archive/2009/08/02/stable-composition-in-mef-preview-6.aspx
http://blogs.msdn.com/gblock/archive/2009/08/02/stable-composition-in-mef-preview-6.aspx

New in Version 2010:

New in Version 201

• New design paradigm for creating

 stylesheets and electronic forms

• True electronic forms design through

 absolute positioning

• JSON editing & conversion

• And much more

Untitled-1 1 1/11/10 10:56 AM

http://www.altova.com

msdn magazine40 Managed Extensibility Framework

environment. We don’t yet have such tooling
support in Visual Studio, however Nicholas
Blumhardt authored MEFX.exe (mef.codeplex.com/

Release/ProjectReleases.aspx?ReleaseId=33536), a
command-line tool that does the trick. MEFX
analyzes assemblies and determines which parts
are being rejected and why.

If you run MEFX.exe at the command line,
you will see a host of options; you can list
specifi c imports, exports or all parts avail-
able. For example, here you can see using
MEFX to display the list of parts:

C:\mefx>mefx.exe /dir:C:\SalesOrderManagement\
bin\debug /parts
SalesOrderManagement.SalesOrderView
SalesOrderManagement.ViewFactory
SalesOrderManagement.MainWindow

Th is is useful for getting a part inventory, but MEFX can also track
down rejections, which is our interest here, as shown in Figure 5.

Dissecting the output in Figure 6 reveals the root cause of the
problem: ILogger can’t be located. As you can see, in large systems
with many parts, MEFX is an invaluable tool. For more on MEFX,
see blogs.msdn.com/nblumhardt/archive/2009/08/28/analyze-mef-assemblies-

from-the-command-line.aspx.
Summarizing, there are several advantages of the attributed model:

• It provides a universal way for parts to declare their exports
and imports.

• It allows systems to dynamically discover available parts rather
than requiring preregistration.

• It’s statically analyzable, allowing tools like MEFX to determine
failures ahead of time.
I’ll now take a quick tour of the architecture and see what it

enables. At a high level, MEF’s architecture is broken into layers:
Programming Models, Hosting and Primitives.

Programming Models Revisited
Th e attributed model is simply one implementation of those primi-
tives that uses attributes as the means of discovery. Th e primitives
can represent non-attributed parts or even parts that aren’t statically
typed, as in the Dynamic Language Runtime (DLR). In Figure 6
you can see an IronRuby part that exports an IOperation. Notice
that it uses IronRuby’s native syntax for declaring a part rather than
the attributed model, as attributes aren’t supported in the DLR.

MEF does not ship with an IronRuby programming model,
though it’s likely we will add dynamic language support in the future.

You can read more about experiments in building a Ruby pro-
gramming model in this blog series: blogs.msdn.com/nblumhardt/archive/

tags/Ruby/default.aspx.

Hosting: Where Composition Happens
Programming models defi ne parts, imports and exports. In order
to actually create instances and object graphs, MEF provides host-
ing APIs that are primarily located in the System.Component-
Model.Composition.Hosting namespace. Th e hosting layer off ers
a lot of fl exibility, confi gurability and extensibility. It’s the place
where much of the “work” in MEF is done and where discovery in
MEF begins. Most folks who are simply authoring parts will never
touch this namespace. If you are a hoster, however, you’ll be using
them as I did earlier in order to bootstrap composition.

Catalogs provide part defi nitions (ComposablepartDefi nition),
which describe the available exports and imports. Th ey are the
main unit for discovery in MEF. MEF provides several catalogs in
the System.ComponentModel.Composition namespace, some of
which you already saw, including DirectoryCatalog, which scans
a directory; AssemblyCatalog, which scans an assembly; and
TypeCatalog, which scans through a specifi c set of types. Each of
these catalogs is specifi c to the attributed programming model. Th e
AggregateCatalog, however, is agnostic to programming models.
Catalogs inherit from ComposablepartCatalog and are an exten-
sibility point in MEF. Custom catalogs have several uses, from
providing a completely new programming model to wrapping and
fi ltering existing catalogs.

Figure 7 shows an example of a fi ltered catalog, which accepts a predi-
cate to fi lter against the inner catalog from which parts will be returned.

Th e CompositionContainer composes, meaning it creates parts and
satisfi es imports of those parts. In satisfying the imports, it will grab
from the pool of available exports. If those exports also have imports,

C:\mefx>mefx.exe /dir:C:\SalesOrderManagement\bin\debug /rejected /
verbose

[part] SalesOrderManagement.SalesOrderView from: DirectoryCatalog
(Path="C:\SalesOrderManagement\bin\debug")
 [Primary Rejection]
 [Export] SalesOrderManagement.SalesOrderView (ContractName="SalesOrder
Management.IView")
 [Export] SalesOrderManagement.SalesOrderView (ContractName="SalesOrder
Management.IView")
 [Import] SalesOrderManagement.SalesOrderView.logger (ContractName="Sal
esOrderManagement.ILogger")
 [Exception] System.ComponentModel.Composition.
ImportCardinalityMismatchException: No valid exports were found
that match the constraint '((exportDefinition.ContractName ==
"SalesOrderManagement.ILogger") AndAlso (exportDefinition.Metadata.Con
tainsKey("ExportTypeIdentity") AndAlso "SalesOrderManagement.ILogger".
Equals(exportDefinition.Metadata.get_Item("ExportTypeIdentity"))))',
invalid exports may have been rejected.
at System.ComponentModel.Composition.Hosting.
ExportProvider.GetExports(ImportDefinition definition,
AtomicCompositionatomicComposition)
at System.ComponentModel.Composition.Hosting.ExportProvider.
GetExports(ImportDefinition definition)
at Microsoft.ComponentModel.Composition.Diagnostics.CompositionInfo.Ana
lyzeImportDefinition(ExportProvider host, IEnumerable`1 availableparts,
ImportDefinition id)

Figure 5 Tracking Down Rejections with MEFX.exe

Figure 4 Available Parts and Required ILogger Shown in a Watch Window

http://mef.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=33536
http://mef.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=33536
http://blogs.msdn.com/nblumhardt/archive/2009/08/28/analyze-mef-assemblies-from-the-command-line.aspx
http://blogs.msdn.com/nblumhardt/archive/2009/08/28/analyze-mef-assemblies-from-the-command-line.aspx
http://blogs.msdn.com/nblumhardt/archive/tags/Ruby/default.aspx
http://blogs.msdn.com/nblumhardt/archive/tags/Ruby/default.aspx

41February 2010msdnmagazine.com

the container will satisfy them fi rst. In this way,
the container assembles entire object graphs on
demand. Th e primary source for the pool of
exports is a catalog, but the container can also
have existing part instances directly added to it
and composed. It’s customary to manually add
the entry point class to the container, combined
with parts pulled from the catalog, though in
most cases parts will come from the catalog.

Containers can also be nested in a hierar-
chy in order to support scoping scenarios.
Child containers by default will query the
parent, but they can also provide their own
catalogs of child parts, which will be created
within the child container:

var catalog = new DirectoryCatalog(@".\");
var childCatalog = new DirectoryCatalog(@".\Child\";
var rootContainer = new CompositionContainer(rootCatalog));
var childContainer = new CompositionContainer(childCatalog,
rootContainer);

In the preceding code, childContainer is arranged as a child of
rootContainer. Both rootContainer and childContainer provide
their own catalogs.

The Primitives: Where Parts
and Programming Models Are Born
Th e primitives located at System.ComponentModel.Comp osition.
Primitives are the lowest level in MEF. Th ey are the quantum universe
of MEF, so to speak, and its über extensibility point. Up until now, I’ve
covered the attributed programming model. MEF’s container, however,
isn’t at all bound to attributes; instead, it’s bound to the primitives. Th e
primitives defi ne an abstract representation of parts, which includes
defi nitions such as ComposablepartDefi nition, ImportDefi nition
and ExportDefi nition, as well as Composablepart and Export, which
represent actual instances.

Exploring the primitives is a journey of its own, and one I’ll like-
ly take in a future article. For now, you can fi nd out more about it
at blogs.msdn.com/dsplaisted/archive/2009/06/08/a-crash-course-on-the-mef-

primitives.aspx.

MEF in Silverlight 4—and Beyond
MEF also ships as part of Silverlight 4.
Everything I discussed here is relevant to
developing extensible Rich Internet Applica-
tions. In Silverlight, we’ve gone even further
and introduced additional APIs to ease the
experience of building apps on MEF. Th ese
enhancements will eventually be rolled into
the .NET Framework.

You can fi nd out more about MEF in
Silverlight 4 in this post: codebetter.com/blogs/

glenn.block/archive/2009/11/29/mef-has-landed-in-

silverlight-4-we-come-in-the-name-of-extensibility.aspx.
I’ve just scratched the surface of what you

can do with MEF. It’s a powerful, robust and fl exible tool that you can
add to your arsenal to help open up your applications to a whole new
world of possibilities. I look forward to seeing what you do with it!

GLENN BLOCK is a PM for the new Managed Extensibility Framework (MEF) in the
.NET Framework 4. Before MEF he was a product planner in patterns & practices responsible
for Prism as well as other client guidance. Block is a geek at heart and spends a good portion of his
time spreading that geekdom through conferences and groups such as ALT.NET. Read his blog at
codebetter.com/blogs/glenn.block.

THANKS to the following technical expert for reviewing this article:
Hamilton Verissimo

Figure 6 A Part Example in IronRuby

public class FilteredCatalog : ComposablepartCatalog,
{
private readonly composablepartcatalog _inner;
private readonly IQueryable<ComposablepartDefinition> _partsQuery;

public FilteredCatalog(ComposablepartCatalog inner,
Expression<Func<ComposablepartDefinition, bool>> expression)
 {
 _inner = inner;
 _partsQuery = inner.parts.Where(expression);
 }

public override IQueryable<ComposablepartDefinition> parts
 {
get
 {
return _partsQuery;
 }
 }
}

Figure 7 A Filtered Catalog

http://www.nwoods.com
www.msdnmagazine.com
http://blogs.msdn.com/dsplaisted/archive/2009/06/08/a-crash-course-on-the-mefprimitives.aspx
http://blogs.msdn.com/dsplaisted/archive/2009/06/08/a-crash-course-on-the-mefprimitives.aspx
http://codebetter.com/blogs/glenn.block/archive/2009/11/29/mef-has-landed-insilverlight-4-we-come-in-the-name-of-extensibility.aspx
http://codebetter.com/blogs/glenn.block/archive/2009/11/29/mef-has-landed-insilverlight-4-we-come-in-the-name-of-extensibility.aspx
http://codebetter.com/blogs/glenn.block

RO BOT IC S

Writing and Testing
VPL Services for Serial
Communication

Microsoft Robotics Developer Studio (RDS) is,
as you’d expect, a platform for programming robots. RDS fi rst
shipped in 2006 and the latest version, RDS 2008 R2, was released
in June 2009.

RDS consists of four major components: the Concurrency and
Coordination Runtime (CCR), Decentralized Soft ware Services
(DSS), Visual Programming Language (VPL) and Visual Simulation
Environment (VSE). Sara Morgan wrote about the VSE in the June
2008 issue of MSDN Magazine (msdn.microsoft.com/magazine/cc546547).

VPL, however, is more pertinent to this article. VPL is a
datafl ow language, which means you create programs by drawing
diagrams on the screen. At run time, messages fl ow from one block
to another in the diagram, and this datafl ow is eff ectively the
execution path of the program. Because VPL is built on top of CCR
and DSS, datafl ows can occur asynchronously (as a result of
notifi cations from services) and can also run in parallel. While VPL
is intended for novice programmers, experienced coders can also
fi nd it useful for for prototyping.

This article discusses:
• Communicating with robots

• Confi guring a serial port service

• Using the service

• Testing with VPL

Technologies discussed:
Microsoft Robotics Developer Studio

Code download available at:
code.msdn.microsoft.com/mag201002Testing

Trevor Taylor

Th is article outlines a simple RDS service that allows you to send
and receive data using a serial port (also known as a COM port).
Th e example code illustrates some of the key concepts involved in
writing reusable RDS services.

To learn more about RDS and download the platform, go to microsoft.com/

robotics. Th e package includes a useful help fi le, which is also
available at msdn.microsoft.com/library/dd936006. You can get further help
by posting questions to the various Robotics Discussion Forums
at social.msdn.microsoft.com/Forums/en-us/category/robotics.

RDS Services
RDS services are built using CCR and DSS. Th ey are conceptually
similar to Web services because RDS has a service-oriented architec-
ture (SOA) based on a Representational State Transfer (REST) model
using the Decentralized Soft ware Services Protocol (DSSP) for com-
munication between services. Wading through all this alphabet soup,
what this means is that you don’t talk directly to RDS services. Instead,
you send messages to a proxy, which acts as the external interface to
the service (an approach Web developers will be familiar with). It
also means that services can be distributed anywhere on the network.

Using a proxy has two eff ects. First, messages sent between
services are serialized before transmission and deserialized at the
other end. XML is the usual format for the data being transmitted.
Second, the proxy defi nes a contract—eff ectively the set of APIs
that are exposed to other services.

Every service has an internal state, which you can retrieve or
modify by operations on the service. Th ese involve sending a
request message and waiting for a response message in a process
similar to that used by most Web services.

When a service’s state changes, it can send out notifi cations to
subscribers. Th is publish-and-subscribe approach makes RDS

msdn magazine42

http://code.msdn.microsoft.com/mag201002Testing
http://msdn.microsoft.com/magazine/cc546547
http://microsoft.com/robotics
http://microsoft.com/robotics
http://msdn.microsoft.com/library/dd936006
http://social.msdn.microsoft.com/Forums/en-us/category/robotics

43February 2010msdnmagazine.com

services diff erent from traditional Web
services because notifi cation messages
are sent asynchronously to subscribers.

When you build a new service, it auto-
matically becomes visible in VPL and you
can start using it immediately. Th is is one
of the key RDS features, and it makes test-
ing and prototyping very easy—you don't
have to write test harnesses in C#, because
you can use VPL instead.

Controlling a Robot Remotely
Many simple educational robots have 8- or
16-bit microcontrollers for their on-board
brains. But because RDS runs under the
.NET Framework on Windows, it doesn’t
generate code that can run directly on these
robots. Th ey must be controlled remotely
via a communications link, instead. (Th e
alternative is to have an on-board PC,
such as the MobileRobots Pioneer 3DX).

Since the majority of microcontrollers
support serial ports, a serial connection is
the obvious solution. However, supplying
the link using a cable isn’t ideal—it limits
the robot’s mobility.

As an alternative, you can use Blue-
tooth to create a wireless connection by
installing a serial-to-Bluetooth device
on the robot. Some robots, such as the
LEGO NXT, come with Bluetooth built
in. Others, such as the RoboticsConnec-
tion Stinger, have optional Bluetooth modules. Bluetooth is a good
choice, given that it’s standard on most laptops these days. Even if
your PC doesn’t have Bluetooth, you’ll fi nd inexpensive, readily
available USB Bluetooth devices.

Th e good news is that you don’t have to know anything about
programming Bluetooth because the connection to the robot will
appear as a virtual serial port. You can use the same code as you
would if a physical cable were providing the serial connection.
Th e only diff erence is that you have to establish a pairing between
your PC and the Bluetooth device on the robot so a virtual COM
port will be created.

Some robot controller boards have fi rmware that can accept
commands using a simple command language. For example, with
the Serializer from RoboticsConnection (which gets its name from
its use of a serial protocol), you can type commands to the con-
troller via a terminal program like HyperTerminal. Commands
are all human-readable, and you terminate each by pressing Enter.

If you’re designing your own protocol for use with a robot, you need
to make a few choices. First, you must decide whether you’ll send bi-
nary data. Converting binary values to hexadecimal or
decimal for transmission requires more bandwidth and increases the
processing overhead for the on-board CPU. On the other
hand, it makes reading the messages much easier, and you won’t

experience any strange behavior due to
misinterpreted control characters.

Th e next question is whether you want
to use fi xed-length packets or a more fl ex-
ible variable-length format. Fixed-length
is easier to parse and works best with
hexadecimal.

You should also consider whether you’ll
use a checksum. For computer-to-
computer communication calculating
check digits is easy. If, however, you want
to test your robot by typing in commands
manually, fi guring out the check digits gets
very tricky. When using checksums,
typically the receiver sends back an
acknowledgement (ACK) or negative
acknowledgement (NAK) depending on
whether the command came across
successfully or not. Your decision about
using a checksum really comes down to
the reliability of the connection.

The SerialPort Service
It should be apparent by now why a seri-
al-port service would be useful. Th e RDS
package, however, doesn’t include such a
service, although many of the robot sam-
ples use serial communication links. If
you explore the RDS sample code, you’ll
fi nd that each example handles the serial
port diff erently. Th is article outlines one
approach to using a serial port. It’s not the

only way to do it and not necessarily the best way.
Before going any further, make sure you’ve downloaded and installed

RDS. Th e download for this article contains the source code of the
SerialPort service. Unzip it into a folder under your RDS instal-
lation directory (also known as the mount point). Note that you
should keep your code separate from the samples folder that comes
with RDS so that you don’t mix up your code with the Microsoft

[DataContract]
public class SerialPortState {
 private bool _openOnStart;
 private bool _asynchronous;
 private SerialPortConfig _config;
 private byte _lastByteReceived;
 private bool _isOpen;

 // Open the COM port when the service starts
 // Must be set in config file
 [DataMember]
 public bool OpenOnStart {
 get { return _openOnStart; }
 set { _openOnStart = value; }
 }

 // Operate in Asynchronous mode
 [DataMember]
 public bool Asynchronous {
 get { return _asynchronous; }
 set { _asynchronous = value; }
 }

 // Configuration parameters for the serial port
 [DataMember]
 public SerialPortConfig Config {
 get { return _config; }
 set { _config = value; }
 }

 // Last byte received from the serial port
 [DataMember]
 public byte LastByteReceived {
 get { return _lastByteReceived; }
 set { _lastByteReceived = value; }
 }

 // Indicates if the port is currently open
 [DataMember]
 public bool IsOpen {
 get { return _isOpen; }
 set { _isOpen = value; }
 }
}

Figure 1 SerialPortState

void DataReceivedHandler(object sender,
 SerialDataReceivedEventArgs e) {

 int data;
 while (sp.BytesToRead > 0) {
 // Read a byte - this will return immediately because
 // we know that there is data available
 data = sp.ReadByte();
 // Post the byte to our own main port so that
 // notifications will be sent out
 ReceiveByte rb = new ReceiveByte();
 rb.Body.Data = (byte)data;
 _mainPort.Post(rb);
 Activate(Arbiter.Choice(rb.ResponsePort,
 success => { },
 fault => { LogError("ReceiveByte failed"); }
));
 }
}

Figure 2 Event Handler

www.msdnmagazine.com

msdn magazine44 Robotics

code. Also, I recommend placing your code under the RDS mount
point rather than elsewhere on your hard drive, because it simplifi es
development. I have a Projects folder where I keep all my own code
in subfolders, making it easy to back up.

Th e main fi les in the SerialPort source code are SerialPort.cs,
SerialPortTypes.cs and SerialPort.manifest.xml.

SerialPort.cs holds the implementation of the service, or the
behavior. It consists of the service class itself, which contains the
operation handlers, plus any required supporting methods and variables.

SerialPortTypes.cs contains the defi nitions of the service state, the
operation types, and message types. In eff ect, it describes the interface
to the service, and it should not contain any executable code. Th is is a
key point about a service contract—it’s a data defi nition only.

SerialPort.manifest.xml is called the manifest and describes
how services are combined, or orchestrated, to run an applica-
tion. Th is fi le is used as input to the DssHost utility, which creates
a DSS node that services run inside. In this case the manifest only
runs the SerialPort service, which is fairly useless. A useful mani-
fest would also specify other services that rely on the SerialPort
service to make connections.

Before using the SerialPort service, you must run the DssProject-
Migration tool and then recompile the service. Open a DSS
Command Prompt (look under RDS in the Start menu) and
make sure your paths are set up so you can execute files in the
\bin folder. Then change to the directory
where you unzipped the code and enter the
following command:

Dssprojectmigration /b- .

Th e /b- option means don’t create a
backup copy and the period character
(.) refers to the current directory.

You can compile the service in Visual Studio or do so from the
command line by typing:

Msbuild serialport.sln

Compiling the service generates the service DLL, a proxy DLL,
and a transform DLL (which translates data types between the
service DLL and the proxy). Th ese will all be placed into the \bin
folder under the RDS mountpoint. You should also keep the mani-
fest and confi g fi les together by copying them into the \samples\
confi g folder (though this isn’t essential).

The Service Contract
Every service has a unique contract identifi er, which is declared in
the Types.cs fi le and looks like a URL. Note, however, that it has no
signifi cance on the Web, and using a URL-style identifi er is just a
convenient way to guarantee uniqueness by allowing organizations
to create their own namespaces. (For your projects you’ll need to
use a namespace other than microsoft .com/robotics.) SerialPor-
tTypes.cs contains the following defi nition:

public sealed class Contract {
 [DataMember]
 public const string Identifier = "http://www.promrds.com/
contracts/2009/12/serialport.html";
}

A service contract also includes the state and operations that
defi ne what properties other services can manipulate and how.
SerialPortState (see Figure 1) includes the serial port confi gura-
tion, some parameters for timeouts, and the last byte received when
operating asynchronously.

You can defi ne your own data types for use in the state and
message types. In this service, there’s a SerialPortConfi g class. To
make it visible in the proxy, it must be public and marked with
the [DataContract] attribute. Each property in the class must be
declared public and also be tagged using the [DataMember] attri-

bute. If this isn’t done, the property will
not be accessible.

You can also expose public enums—
that way other programmers don’t have to
use magic numbers in code that uses your
service. It’s good programming practice,
too, because it allows datatype checking.

[ServiceHandler]
public virtual IEnumerator<ITask> WriteStringHandler(
 WriteString write) {

 if (!_state.IsOpen) {
 throw (new Exception("Port not open"));
 }

 // Check the parameters - An empty string is valid, but not null
 if (write.Body.DataString == null)
 throw (new Exception("Invalid Parameters"));

 // NOTE: This might hang forever if the comms link is broken
 // and you have not set a timeout. On the other hand, if there
 // is a timeout then an exception will be raised which is
 // handled automatically by DSS and returned as a Fault.
 if (_state.Config.InterCharacterDelay > 0) {
 byte[] data = new byte[1];
 for (int i = 0; i < write.Body.DataString.Length; i++) {
 data[0] = (byte)write.Body.DataString[i];
 sp.Write(data, 0, 1);
 yield return Timeout(_state.Config.InterCharacterDelay);
 }
 sp.WriteLine("");
 }
 else
 sp.WriteLine(write.Body.DataString);

 // Send back an acknowledgement now that the data is sent
 write.ResponsePort.Post(DefaultSubmitResponseType.Instance);
 yield break;
}

Figure 3 WriteStringHandler

<?xml version="1.0" encoding="utf-8"?>
<SerialPortState
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns=http://www.promrds.com/contracts/2009/12/serialport.html
 >
 <OpenOnStart>false</OpenOnStart>
 <Asynchronous>false</Asynchronous>
 <Config>
 <PortNumber>1</PortNumber>
 <BaudRate>57600</BaudRate>
 <Parity>None</Parity>
 <DataBits>8</DataBits>
 <StopBits>One</StopBits>
 <ReadTimeout>0</ReadTimeout>
 <WriteTimeout>0</WriteTimeout>
 <InterCharacterDelay>0</InterCharacterDelay>
 </Config>
 <LastByteReceived>0</LastByteReceived>
 <IsOpen>false</IsOpen>
</SerialPortState>

Figure 4 Confi g File for SerialPortState

Figure 5 VPL Service List

45February 2010msdnmagazine.com

When you design a service, you also have to
decide how other services will interact with it.
Th is SerialPort service supports the following
operations, listed below in logical groups:

• Get, Subscribe
• ReceiveByte
• SetConfi g, Open, Close, ClearBuff ers
• ReadByte, ReadByteArray, ReadString
• WriteByte, WriteByteArray, WriteString

Note that the ReceiveByte operation is for internal use by the
service itself and shouldn’t be used by other services. More on
this later.

Th e Read and Write operations are all synchronous—the ser-
vice does not respond until the operation has completed. If you
open the serial port in asynchronous mode (explained below),
the service will send you a ReceiveByte notifi cation for every byte
received and you should not use the Read operations. Th e Write
operations, however, are always synchronous.

Each operation has a request message type and a response
message type. Some of these might have properties and others will
be empty—the datatype itself is sufficient to convey the
appropriate message.

Service Behavior
As noted earlier, the executable code of the service is in
Serial Port.cs. All services are derived from DsspServiceBase, which
provides a number of helper methods and properties.

When a service is started, its Start method is called:
protected override void Start() {
 InitializeState();
 base.Start();
 if (_state.OpenOnStart)
 OpenPort();
}

Start takes care of initializing the state (if necessary) and then
opening the serial port automatically if OpenOnStart was speci-
fi ed in the confi g fi le (explained below).

Each operation supported by a service must have a service
handler. But some operations, such as Drop and Get, are han-
dled by the infrastructure (unless you wish to override the
default behavior).

Th e OpenHandler shows a very simple handler:
[ServiceHandler]
public void OpenHandler(Open open) {
 // Remember the Asynchronous flag
 _state.Asynchronous = open.Body.Asynchronous;
 if (OpenPort()) {
 open.ResponsePort.Post(
 DefaultSubmitResponseType.Instance);
 }
 else {
 throw (new Exception("Open Failed"));
 }
}

Th is handler calls OpenPort, an internal
method. If this is successful, a response is posted
back. Because no information has to be returned,
this is just a default response provided by DSS.

If the open fails, then an exception is thrown.
DSS catches the exception and converts it to a
fault, which is sent back as the response. Th ough
not immediately obvious, if an exception occurs

in OpenPort, it will also bubble up and return a fault.
Th ere’s no need to explain all of the OpenPort method, but one

point is important—you can open the serial port for either synchro-
nous or asynchronous operation. In synchronous mode, all read
and write requests complete before returning a response. However,
if you open in asynchronous mode, notifi cations are sent for every
character received. To make this work, the code sets up a conven-
tional event handler:

if (_state.Asynchronous) {
 // Set up an Event Handler for received characters
 sp.ReceivedBytesThreshold = 1;
 sp.DataReceived += new SerialDataReceivedEventHandler(
 DataReceivedHandler);
}

Th e event handler is shown in Figure 2. Th is handler runs on
a .NET thread. But to interoperate with DSS, it must be switched
to a CCR thread, so the code posts a ReceiveByte request to the
service’s own main operations port. Aft er posting a request, the
code should receive the response, otherwise there will be a mem-
ory leak. Th is is the purpose of Arbiter.Choice, which uses the C#
shorthand notation for anonymous delegates to handle the two
possible responses. An Activate is necessary to place the Choice
receiver into the active queue. Only a fault is relevant in this case,
and a successful result does nothing.

Th e ReceiveByte handler will be executed next to process the
new character:

[ServiceHandler]
public void ReceiveByteHandler(ReceiveByte recv) {
 _state.LastByteReceived = recv.Body.Data;
 // Send a notification, but only if in asynch mode
 if (_state.Asynchronous)
 SendNotification(_submgrPort, recv);
 recv.ResponsePort.Post(DefaultUpdateResponseType.Instance);
}

Th e [ServiceHandler] attribute lets DSS hook the handler to the
operations port during service initialization. Th e handler sends a
notifi cation to subscribers, then posts back a response saying the
operation is complete. (Services that wish to receive notifi cations
must send a Subscribe operation to the SerialPort service).

Service handlers for the other read and write operations are fairly
self-explanatory. Th e WriteStringHandler (see Figure 3) contains
one small wrinkle, though—it can insert a small delay between
sending characters. Th is is designed to help slower microcontrollers
that might not be able to keep up if the data is sent at full speed,
especially devices like the BasicStamp that do bit banging and don’t
have a hardware Universal Asynchronous Receiver/Transmitter
(UART), so they perform serial I/O in soft ware .

Another point about this handler is that it is an Iterator. Notice
the declaration of the method as IEnumerator<ITask> and the fact
that it uses yield return and yield break. Th is feature of the C# lan-
guage allows CCR to suspend tasks without blocking a thread. When

Figure 6 Service Block

The RDS package doesn’t
include a serial port service.

www.msdnmagazine.com

msdn magazine46 Robotics

the yield return is executed, the thread executing the method is
returned to the pool. Once the timeout has completed, it posts
back a message that causes execution to resume, though possibly
on a diff erent thread.

Confi guring the Service
A confi guration fi le is an XML serialized version of the service
state that’s loaded during service initialization. It’s a good idea to
support a confi g fi le because it allows you to change the behavior
of the service without recompiling. Th is is especially important for
setting the COM port number.

You can specify the name of the fi le in the service when you
declare the state instance (in SerialPort.cs):

[ServiceState]
// Add an initial state partner to read the config file
[InitialStatePartner(Optional = true,
 ServiceUri = "SerialPort.Config.xml")]
SerialPortState _state = new SerialPortState();

In this case we’ve declared the confi g as optional; otherwise, the
service won’t start if the confi g fi le is missing. On the other hand,
this means you have to check the state in the service’s Start method
and initialize it to some sensible defaults if necessary.

Because no path is specifi ed for the ServiceUri, DSS will assume
that the fi le is in the same folder as the manifest used to start the
service.Figure 4 shows the contents of a typical confi g fi le.

Note that this confi g fi le does not request the service to open the
COM port automatically, so you’ll have to send an Open request.

If you want your service to have a professional look, you need to pay
attention to details such as the service description and icons. Even if
you don’t plan to use VPL yourself, it’s a good idea to test your service
in VPL and make it VPL-friendly so other people can use it easily.

You can decorate your service class with two attributes that
describe the service:

[DisplayName("Serial Port Service")]
[Description("SerialPort service provides access to a Serial (COM)
Port")]

Th e fi rst attribute displays as the name of the service in the VPL
service list (see Figure 5), and the second attribute appears as a
tooltip if you mouse over the name of the service in the list.

If you have a Web site and you want to document your services
online, you can attach another attribute to the service class to
provide the hyperlink.

[DssServiceDescription("http://www.promrds.com/SerialPort.htm")]

When VPL sees this attribute, it adds a small information icon
(a white “i” on a blue disc) beside the service in the service list.

If you add icons to your service, which you can easily do, they’ll
appear in VPL diagrams and the service list. Notice the small icon,
called a thumbnail, beside the name of the service in Figure 5.
Figure 6 illustrates the larger version of the icon, which will show
up inside the block that appears in VPL diagrams.

When you add these images to a project, make sure you change
the fi le properties so that Build Action is set to Embedded Resource.
PNG is the preferred fi le format because it supports an alpha chan-
nel. Th is lets you create an icon with a transparent background by
setting the alpha value on the background color to zero.

Th e service icon image should be 32 by 32 pixels and the thumb-
nail 16 by 16. Th e fi le names of the images must begin with the class
name of the service, in this case SerialPortService. Th us I made the
fi le names for my example SerialPortService.Image.png and Seri-
alPortService.Th umbnail.png.

Using the Service
Th e service is quite fl exible. You can specify the serial port confi gu-
ration in a confi g fi le (which is the most common way) or by
sending a SetConfi g request. Once you’ve set the confi g, you can call
the Open operation. For convenience, a fl ag in the confi g fi le will

Figure 8 Opening the Serial Port in Asynchronous Mode

Figure 7 Serial Port Service Confi guration

You can defi ne your own data
types for use in the state and

message types.

47February 2010msdnmagazine.com

cause the service to open the port automatically on startup. If the
port is already open, the Open call will fi rst close, then re-open it.

You need to decide how you want to use the service: synchro-
nously or asynchronously. When operating synchronously, each
read or write request will wait until the operation completes before
sending back a response. In terms of VPL, this is a simple approach,
because the message fl ow will pause at the SerialPort block in
the diagram. Note that asynchronous operation is not fully
asynchronous—write operations still occur synchronously. But
every new byte received is sent as a notifi cation to subscribers.

In theory, every state-modifying operation on a service should
cause a notifi cation to be sent so that subscribers can keep their
own cached version of the service state. Th is means all operations
based on the DSSP Replace, Update, Insert, Delete and Upsert
operations should send a corresponding notifi cation. However,
developers oft en play fast and loose with this requirement.

For simplicity, the SerialPort service only sends notifi cations
using the ReceiveByte operation type when in asynchronous mode.

Th e Open, Close, and SetConfi g operations
also cause notifi cations to be sent.

Because the Read and Write operations
do not modify the state, they are subclassed
off the DSSP Submit operation. Of course,
they have a side-eff ect, which is to receive
and send data over the serial link.

Testing with VPL
Th e download for this article includes two
sample VPL programs, EchoAsynch and
EchoSynch, which show how to use the ser-
vice in both asynchronous mode (via notifi -

cations) and synchronous mode. Th e VPL samples use confi g fi les
to set the initial parameters for the COM port, including the port
number (which is set to 21 in the confi g fi les and must be changed
to match your computer's COM port address).

Note that to test the service you will need a null modem cable
and either two computers with serial ports or two ports on the
same computer. USB-to-serial devices are readily available, so it’s
quite feasible to have multiple serial ports on a single PC. When
you have your COM ports connected together, run a terminal
emulator such as HyperTerminal and connect to one of the COM
ports. Start by running the EchoAsynch VPL program on the
other serial port. (You can fi nd VPL in the Start menu under RDS).
When you type into the terminal emulator window, you should
see the characters echoed.

You can use VPL to create confi g fi les. Click on a SerialPort service block
in the diagram and look in the Properties panel. You should see some-
thing like Figure 7. Make sure the PortNumber is set correctly for your
PC. (Th is must be the other serial port, not the one you opened in the

Figure 9 EchoAsynch Program

Figure 10 The EchoSynch Program

www.msdnmagazine.com

Robotics

terminal emulator). You’ll notice that Parity and StopBits are drop-
down lists. Th e entries in these lists come directly from the enums
defi ned in SerialPortTypes.cs.

Th is is one place where XML doc comments come in handy. When
you hover over a confi g parameter with the mouse cursor, a tooltip will
pop up showing the corresponding comment for each state member.

When you run the EchoAsynch VPL program, the fi rst part of the
program in Figure 8 opens the serial port in asynchronous mode.

If you’ve entered invalid values in the confi g, such as a bad baud
rate, the Open will fail. (It might also fail if the COM port is in use,
the port doesn’t exist, or you don’t have appropriate permissions).
Th is is why the program checks for a fault and displays it.

Th e rest of the program (see Figure 9) just echoes every
character received. It does this by taking the characters from
ReceiveByte notifi cations and sending them back using WriteByte.

To make the output easier to read, a carriage return character
(ASCII 13, decimal) has a linefeed (10) appended so the cursor will
move to the next line in your terminal emulator window. Note that
all of the SerialPortService blocks in the Figure 9 diagram refer to
the same instance of the service.

Th e EchoSynch VPL program (see Figure 10) uses the synchro-
nous mode of operation—it doesn’t use notifi cations. (In fact,
notifi cations are never sent in synchronous mode).

Unlike the previous program, this one uses ReadString and
Write String to echo data. Th ese operations perform functions
similar to those of ReadByteArray and WriteByteArray, However,
strings are easier to handle in VPL than byte arrays.

Th e string operations use a linefeed (or newline) character as
an end-of-line marker. So ReadString completes when you press
linefeed (Ctrl-J) not when you press Enter. Th is can be confus-
ing the fi rst time you test the program using a terminal emulator,
because you might wonder why nothing is echoing. WriteString
adds a carriage return and linefeed to the output so each string
appears on a separate line.

Note that the confi g fi le for EchoSynch has an InterCharacter-
Delay of 500ms. Th is causes the strings to be sent very slowly. You
can try changing this value.

TREVOR TAYLOR, Ph.D., is the program manager for Robotics Developer Studio at
Microsoft . He’s the coauthor, with Kyle Johns, of “Professional Robotics Developer
Studio” (Wrox, 2008). Sample code from the book is available from promrds.com.

THANKS to the following technical experts for reviewing this article:
Kyle Johns

You need to decide how
you want to use the

service: synchronously or
asynchronously.

http://www.scaleoutsoftware.com
http://promrds.com.

DYNAMIC .NET

Creating Interactive
Bing Maps with
Silverlight and IronRuby

One of the notable features of Silverlight is its support
for dynamic languages such as IronRuby and IronPython. Th is
integration capability enables the development of Rich Internet
Applications (RIAs) using the Silverlight platform—XAML for the
presentation layer and dynamic languages for the code-behind.
Th is article demonstrates the integration capability of Silverlight
with dynamic languages and the Microsoft Bing Map controls. I’ll
start with a high-level overview of dynamic languages, then dive
into Silverlight’s support for these languages. I’ll wrap up by show-
ing you how to build an interactive 3-D animated location-fi nding
Silverlight application using the Microsoft Bing Map Silverlight
control and IronRuby.

Dynamic Language Basics
Read-Eval-Print Loop (REPL) environments provide lightweight
“play as you go” programming capability for developers through
the use of what are known as dynamic programming languages—
languages that are dynamically typed and compiled at runtime.
You do not need to declare variables of particular data types.
Everything is handled by the runtime through the context
of expressions.

Th e more familiar languages such as C# and Visual Basic are stati-
cally typed languages that are more rigid in nature. Development
and deployment using dynamic languages is simpler compared to
those static languages, which require compilation and distribution
of output. However, you still need to do proper validation and
testing for type safety when using dynamically typed languages.

With dynamic languages, you can create a function and assign
it to a variable or pass it as a parameter to another function. Th is
makes things like closures and passing functions as parameters
much easier. In general, two defi ning characteristics of closures
are the ability to assign a block of code (a function) to a variable,

This article discusses:
• Dynamic languages and Silverlight

• Silverlight, IronRuby and the just-text approach

• Bing Maps integration

• Custom views and 3-D animation

Technologies discussed:
Silverlight, IronRuby, IronPython, Bing Maps

Code download available at:
code.msdn.microsoft.com/mag201002Bing

Ashish Ghoda

and this block of code’s ability to retain access to variables that were
accessible where it was created.

Th e following traditional ShortWords method in C# returns a
subset of a list of words that matches the criteria of a maximum
word length of 3 or fewer letters:

public static List<string> ShortWords(List<string> wordList) {
 List<string> shortWordList = new List<string>();
 int maximumWordLength = 3;
 foreach(string word in wordList) {
 if(word.Length <= maximumWordLength) {
 shortWordList.Add(word);
 }
 }
 return(shortWordList);
}

With LINQ, you can achieve similar functionality in a much
more eff ective way, as you can see in the following code snippet:

public static List<string> ShortWords(List<string> wordList) {
 var maximumWordLength = 3;
 return wordList.Where(w => w.Length <=
 maximumWordLength).ToList<string>();
end

Implementing the same method in a dynamic language such as
IronRuby—an implementation of the Ruby programming language

49February 2010

Ghoda.Silverlight.0210.Lay6_49-55.indd 49 1/15/10 9:46 AM

http://code.msdn.microsoft.com/mag201002Bing

msdn magazine50 Dynamic .NET

for the Microsoft .NET Framework—is similar to the C# using LINQ
approach and is signifi cantly shorter than the traditional approach:

def ShortWords(wordList)
 maximumWordLength = 3
 return wordList.select {|w| w.Length <= maximumWordLength}
end

Just comparing these two implementations of the same algo-
rithm reveals much about IronRuby (and dynamic languages in
general). Th e IronRuby code is concise, and nowhere do you see a
data type keyword such as string or int.

Th e most interesting aspect of this block of IronRuby code is the
closure, located between the curly braces. Here the closure, essen-
tially a function, is being passed to the select method. Th e select
method uses a closure to extract a subset of a collection. Th e code
that forms the closure actually executes within the select method
(here, the closure extracts strings
within the collection wordList that
meet the criterion), but it retains ac-
cess to the variables in its original
scope (in this case, the maximum-
WordLength variable).

Closures are much more powerful
than this simple example illustrates.
Th ey are similar to using LINQ or
passing a delegate to a method such
as Exists or Find in C#, with the ad-
ditional benefi t of retaining access
to their original scope. You can get
more details on closures from the book I wrote with Jeff Scanlon,
“Accelerated Silverlight 3” (Apress, July 2009).

Dynamic Languages for Silverlight
Silverlight currently supports the IronRuby and IronPython
dynamic languages via the Microsoft Dynamic Language Runtime
(DLR) engine—a generic platform and hosting model for dynamic
languages to run on top of the Microsoft .NET Framework
Common Language Runtime (CLR).

The DLR is a set of .NET Framework libraries and services
that dynamically discover types at runtime using reflection, so
that code written in dynamic languages can be executed on the
.NET platform.

Th ere are fi ve DLR scripting assemblies that provide the run-
time scripting environment—bridging the dynamic languages
with Silverlight:

• Microsoft .Scripting.dll
• Microsoft .Scripting.Core.dll
• Microsoft .Scripting.Silverlight.dll

• Microsoft .Scripting.ExtensionAttribute.dll
• Microsoft .Scripting.Debugging.dll

Microsoft .Scripting.Silverlight.dll contains classes that let develop-
ers write Silverlight applications using dynamic languages. One of the
key classes is DynamicApplication, which inherits directly from
System.Windows.Application. Th is class represents the Silverlight-
based dynamic application object by providing access to visual
elements from the dynamic language code, as well as an entry point
for dynamic language applications to host on Silverlight hosts. It
provides additional properties that extend the Host, Resources, and
RootVisual properties already supplied by the Application class.

IronRuby (ironruby.net) is an open source implementation of the
Ruby programming language that provides integration between
Ruby and the .NET Framework.

Th e current version of IronRuby (1.0-rc1) supports the .NET
Framework 3.5 and the .NET Framework 4 beta. Note that Iron-
Ruby 1.0-rc1 provides both .zip and .msi downloads. For Silverlight
applications, it’s better to use the .zip version.

IronPython (ironpython.codeplex.com) is an open source implemen-
tation of the Python programming language that, like IronRuby,
allows integration of the Python language with the .NET Frame-
work. Currently you can download IronPython 2.6 for the .NET
Framework 3.5 and the .NET Framework 4 beta.

IronRuby and IronPython each have two assemblies that sup-
port the specifi c language, providing capabilities such as parsing
the language and communicating with the host environment. Th ey
are IronPython.dll and IronPython.Modules.dll for IronPython,
and IronRuby.dll and IronRuby.Libraries.dll for IronRuby.

Note that both IronRuby and IronPython are in continuous
development. Visit their homepages to access the latest releases and
documentation. You can also get the related source code, along with
the source code of the DLR, by visiting dlr.codeplex.com.

Installing Development Components
Th ere are two approaches to developing dynamic language-based
Silverlight applications.

• Th e traditional approach using the Chrion.exe development
utility

• Th e just-text approach using inline browser scripting
In this article, I will provide an overview of both approaches and

then will develop a sample Microsoft Bing Maps application using
the newer just-text approach.

IronRuby IronPython Installed
with IronRuby

IronPython Installed
Independently

Description

index.html index.html index.html Hosts the dynamic language-based Silverlight
application.

app\app.rb app\app.py python\app.py Main startup fi le for the Silverlight application.

app\app.xaml app\app.xaml python\app.xaml Main XAML user interface fi le.

css\screen.css css\screen.css stylesheets\screen.cs Defi nes application styles.

Not provided Not provided stylesheets\error.css Defi nes application error styles and format.

js\error.js js\error.js javascripts\error.js Manages unhandled application errors.

Figure 1 Core Files for Dynamic Language-Based Silverlight Applications

IronRuby code is concise, and
nowhere do you see a data type

keyword such as string or int.

Ghoda.Silverlight.0210.Lay6_49-55.indd 50 1/15/10 9:46 AM

http://ironruby.net
http://ironpython.codeplex.com
http://dlr.codeplex.com

51February 2010msdnmagazine.com

Since the introduction of Silver-
light 2, along with the DLR scripting
libraries, Microsoft has provided a
dynamic language-based Silverlight
application development environ-
ment via the Chiron.exe devel-
opment utility and IronRuby and
IronPython Silverlight application
project templates.

To get started, download and in-
stall the DLR and either IronRuby or
IronPython from the sites mentioned
earlier. Samples, documentation,
utilities and some additional impor-
tant components are installed along
with IronRuby and IronPython.

Th e Silverlight templates for dy-
namic languages provide core appli-
cation fi les, which are available under
the Silverlight\script\templates\ruby
and Silverlight\script\templates\python folders. Figure 1 shows
some details about these application template fi les.

Th e Script folder includes the sl.bat fi le, which will help you to
create a preliminary dynamic language-based Silverlight applica-
tion. Th e following shows the command-line format:

sl [ruby|python] <ApplicationPath>

Chiron.exe, the Silverlight development utility, dynamically
packages a set of fi les into an .xap fi le for deployment. (For further
discussion of Chiron.exe and compilation, see blog.jimmy.schementi.com/

2009/03/state-of-dlr-for-silverlight.html.)
You can launch an application using Chiron.exe with the /b

(browser) option:
Chiron /b

One of the interesting features of Chiron.exe is that any time you
modify a fi le within the application directory, Chiron.exe will repackage
the application into an .xap and reload it. You must
still refresh any active browser sessions, though.

The Just-Text Approach
The traditional DLR-based development
approach makes using the Chrion.exe
utility mandatory and follows the old edit-
compile-refresh development model.

It is now possible to write IronRuby, Iron-
Python and XAML code within (X)HTML
markup directly in the browser (see ironruby.com/

browser for details). Th is is called the just-text
approach. No need to install any components
to create and run the DLR-based application.
Th e just-text approach follows the write-save-
refresh development model and removes the
need for Chrion.exe.

With the just-text approach, you don’t even
need local copies of the DLR scripting assem-
blies, along with the IronRuby and IronPython

language-specific assemblies mentioned earlier. Though the
Gestalt sample package available from ironruby.com/browser contains
the binaries, you can also reference the dlr.js from a well-known
server, and that requires that you have nothing installed.
However, you do need a way to host Silverlight controls and enable
DLR integration within the HTML page.

Th e Gestalt project capitalizes on the existing Silverlight.js ap-
proach, which uses the JavaScript API to create the Object tag that
hosts the Silverlight control. It also enables error management and
detecting the browser and Silverlight plug-in requirements on the
client machine. Th e Mix Online Lab team enhanced the Silvelright.
js fi le to include inline scripting and DLR integration capabilities
and renamed the fi le as dlr.js.

To get started, the Gestalt project provides the cross-browser,
cross-platform library built on the DLR. You can get the compressed

library fi le, gestalt.zip, from visitmix.com/labs/

gestalt/downloads. Figure 2 provides details on
the core fi les included in the .zip fi le.

Note that from Silverlight 3, the Transparent
Silverlight Extensions capability enables devel-
opers to package the commonly used assembly
fi les as a separate reusable library with an .slvx
filename extension. The .slvx files can be
deployed on a common Internet location or
client-specifi c location. Th e required .slvx fi les
must be referenced in the App Manifest.xaml
fi le within the ExternalParts section as an
ExtensionPart with the correct path.

Jimmy Schementi’s excellent paper on the
just-text approach (ironruby.com/browser/sl-back-to-

just-text.pdf) provides some very helpful guid-
ance. Th is paper also details how to change the
default DLR settings of the dlr.js fi le.

You need a Web server instance such as IIS
or Apache to host and run the DLR-based

IronRuby File Description

dlr\dlr.js Enhanced Silverlight.js fi le to host the dynamic language-based Silverlight
application and enable inline scripting on HTML pages.

dlr\ gestaltmedia.js Enables HTML5 video and audio playback.

dlr\dlr.xap Includes the AppManifest.xaml fi le that references Microsoft.Scripting.slvx and
points to Microsoft.Scripting.Silverlight.dll as an entry point assembly. Also
includes languages.confi g to provide confi guration. information for
DLR languages.

dlr\IronRuby.slvx Includes the IronRuby.dll and IronRuby.Libraries.dll fi les to enable development
of IronRuby-based Silverlight applications.

dlr\IronPython.slvx Includes the IronPython.dll and IronPython.Modules.dll fi les to enable
development of IronPython-based Silverlight applications.

dlr\ Microsoft.Scripting.slvx Includes fi ve DLR scripting assemblies (Microsoft.Scripting.dll, Microsoft.Scripting.Core.dll,
Microsoft.Scripting.Silverlight.dll, Microsoft.Scripting.ExtensionAttribute.dll and
Microsoft.Scripting.Debugging.dll) that provide the runtime scripting
environment, bridging the dynamic languages with Silverlight.

samples/getting.started/*.html Sample Web pages demonstrating inline scripting, IronRuby, IronPython and
XAML capabilities.

Figure 2 Core Library Files for the Just-Text Approach

Figure 3 Running the Gestalt
Project’s Sample Application

Ghoda.Silverlight.0210.Lay6_49-55.indd 51 1/15/10 9:46 AM

www.msdnmagazine.com
http://visitmix.com/labs/gestalt/downloads
http://visitmix.com/labs/gestalt/downloads
http://(ironruby.com/browser/sl-back-tojust-text.pdf
http://(ironruby.com/browser/sl-back-tojust-text.pdf
http://ironruby.com/browser
http://ironruby.com/browser
http://ironruby.com/browser
http://blog.jimmy.schementi.com/2009/03/state-of-dlr-for-silverlight.html
http://blog.jimmy.schementi.com/2009/03/state-of-dlr-for-silverlight.html

msdn magazine52 Dynamic .NET

inline scripted Web applications. From gestalt.zip, place the Dlr and
Samplesfolders in the root of the Web server. If you do not install
these folders at the root of the Web server, you need to modify the
dlr.js fi le appropriately.

Next add MIME types for .rb, .py and .slvx fi les, like the following:
• For .rb and .py fi les set the MIME-type to: text/plain
• For .slvx fi les set the MIME-type to: application/octet-stream

To validate the environment, visit the samples/get.started folder
and browse the 05_fi nal.html fi le. Th e Web page demonstrates the
IronPython, HTML and XAML-based graphics with animation-
integration capabilities, as shown in Figure 3.

Silverlight, IronRuby and the Just-Text Approach
Let’s start by defi ning the skeleton of a DLR-based Silverlight
application using IronRuby, following the just-text approach. Once
you copy the Gestalt fi les to the Web server root, simply open a text
editor and start writing your HTML fi le. It’s that simple!

Th e good thing is, dlr.js adds a Silverlight control to the page
and provides all the necessary core requirements to enable
dynamic language integration capabilities. For this, simply include the
dlr.js fi le on the HTML page:

<head>
 <script src="/dlr/dlr.js" type="text/javascript"></script>
</head>

Note that including dlr.js will confi gure default settings for
your DLR-based Silverlight application. If you would like to
customize the settings, you need to override the defaults by writing
custom script code within the HTML fi le. For details, see Jimmy
Schementi’s paper mentioned earlier.

Now you are all set to write XAML and IronRuby or IronPy-
thon code in the HTML file, within a script tag. To write inline
IronRuby code, you need to add the script tag with the appro-
priate type and class information and place the IronRuby code
within the tag, like so:

<script type="application/ruby"
 class="Class Name Goes Here">
 IronRuby Code Goes Here
</script>

To write inline IronPython code, simply do the same with the
appropriate substitutions:

<script type="application/python"
 class="Class Name Goes Here">
 IronPython Code Goes Here
</script>

To write inline XAML code, add the script tag with the appropri-

ate type, ID, width, and height information and place the XAML
code within the tag:

<script type="application/xml+xaml" id="Place ID here"
 Width="400" Height="400">
 <UserControl ...>
 XAML Code Goes Here
 </UserControl>
</script>

You can access the XAML controls and implement the event integra-
tion using code, which I will demonstrate while developing the applica-
tion in the next section. Once you fi nish with the code, just browse the
page and you should see the application outcome right away.

Bing Map Integration
Now that you’ve seen the basic skeleton of the dynamic language
Silverlight application using the inline scripting just-text approach,
let’s take it a step further with the integration of Microsoft Bing
maps (formerly known as Virtual Earth).

Th e Microsoft Bing Maps Silverlight Control SDK version 1 was
released in November 2009 (msdn.microsoft.com/library/ee681884). Th e
installer is called BingMapsSilverlightControlv1.0.1Installer.msi.
Note that you need at least Silverlight 3 to work with this control.
Th e installation includes Microsoft .Maps.MapControl.dll and
Microsoft .Maps.MapControl.xml, Microsoft .Maps.Map Control.
Common.dll and Microsoft .Maps.Map Control.Common.xml and
offl ine documentation.

Before you start building applications using the Silverlight
Bing Maps control, you must create a Bing Maps Developer
account to receive the application authentication key. To do so, visit
bingmapsportal.com.

Th e Microsoft Bing Maps Silverlight control CTP release was
available before the release of Version 1 of the SDK. Th ere are con-
siderable changes and enhancements in version 1 compared to the
CTP release. See msdn.microsoft.com/library/ee681889 to understand the
key diff erences between the CTP and version 1 releases.

Now create a SilverlightMap.html fi le and include the dlr.js fi le
as described in the previous section.

You need to modify the AppManifest.xaml fi le (available in
the dlr.xap fi le) and include Microsoft .Maps.MapControl.dll and
Microsoft .Maps.MapControl.Common.dll fi les to load as part of
the application start up. To do this, rename dlr.xap to dlr.xap.zip and
extract the AppManifest.xaml and languages.confi g fi les from the fi le.
Th en add Microsoft .Maps.MapControl.dll and Microsoft .Maps.Map-
Control.Common.dll fi les as AssemblyPart, as shown in Figure 4.

<Deployment
 xmlns="http://schemas.microsoft.com/client/2007/deployment"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 RuntimeVersion="2.0.31005.0"
 EntryPointAssembly="Microsoft.Scripting.Silverlight"
 EntryPointType="Microsoft.Scripting.Silverlight.DynamicApplication"
 ExternalCallersFromCrossDomain="ScriptableOnly">
 <Deployment.Parts>
 <AssemblyPart Source="Microsoft.Maps.MapControl.dll" />
 <AssemblyPart Source="Microsoft.Maps.MapControl.Common.dll" />
 </Deployment.Parts>
 <Deployment.ExternalParts>
 <ExtensionPart Source="Microsoft.Scripting.slvx" />
 </Deployment.ExternalParts>
</Deployment>

Figure 4 Modifi ed AppManifest.xaml File

<script type="application/xml+xaml" id="sl_map"
 Width="1350" Height="575">
 <UserControl x:Name="silverlight_map"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="200"
 Height="280" Background="Black"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 mc:Ignorable="d"
 xmlns:m="clr-namespace:Microsoft.Maps.MapControl;assembly=Microsoft.
Maps.MapControl">
</UserControl>
</script>

Figure 5 Referencing Map Controls in the HTML File

Ghoda.Silverlight.0210.Lay6_49-55.indd 52 1/15/10 9:46 AM

http://msdn.microsoft.com/library/ee681884
http://bingmapsportal.com
http://msdn.microsoft.com/library/ee681889

53February 2010msdnmagazine.com

Now zip up the modifi ed AppManifest.xaml, existing langugages.
confi g, Microsoft .Maps.MapControl.dll and Microsoft .Maps.Map-
Control.Common.dll fi les and rename the .zip fi le to dlr.xap. Over-
write the existing dlr.xap fi le (under the Dlr folder) on the Web server
with the new one.

Next, open the SilverlightMap.html fi le, add the script tag
for the XAML code, then add the UserControl with the name
Silverlight_map and a reference to the map control to create the
necessary namespace (see Figure 5).

Finally, add the Canvas control as the main container and
the Map element under the Grid control. Notice that I kept the
same width and height of Canvas and Grid controls and set the
Width and Height properties of the Map control to 800 and 400,
respectively:

<Canvas x:Name="container" Width="1350" Height="575">
<Grid x:Name="layout_root" Width="1350" Height="575">
<m:Map CredentialsProvider="AuthenticationKey"
 Width="800" Height="400" Grid.Column="1"
 HorizontalAlignment="Center"/>
</Grid>
</Canvas>
</UserControl>

In the code snippets shown here, you need to replace “Authen-
ticationKey” with your authentication key for the Map control.

Copy the fi le to the existing Sample/Getting.started folder on
the Web server and browse the page. You should see the Map with
the default Road mode (see Figure 6).

Map Modes and 3-D Animation
Let’s change the map mode to aerial with la-
bels as the default view. Let’s also introduce
3-D animation to the map.

To change the default map mode, fi rst give
the Map element a name (in this example, I used
map_in_ironruby) so it can be referenced in
the IronRuby-based inline code. I’ll also apply
3-D projection to the Map object. Th is was a
new feature in Silverlight 3. To do that I set the
Projection property of the Map object to Plan-
Projection and I set the RotationX property to
-20. Th is transforms the Map object, giving a
slightly skewed viewing angle:

<Grid x:Name="layout_root" Width="1350"
Height="575" Background="Black">
 <m:Map x:Name="map_in_ironruby"
 CredentialsProvider="AuthenticationKey"
 Width="800" Height="400">
 <m:Map.Projection>
 <PlaneProjection RotationX="-20"/>
 </m:Map.Projection>
 </m:Map>
</Grid>

Notice that I also changed the background
of the Grid to black.

Now add the script tag for IronRuby and
write the following lines of code to include
the required assemblies (including Map-
Control.dlls) and turn on aerial view with
labels for the Map control.

Notice that with the new just-text
approach, I can reference the Map object

by name. In the current version of Gestalt libraries, you need to
reference objects with me or xaml shorthand (here I used the me
shorthand). In the future, XAML elements with the x:Name set
can be accessed through root_visual shorthand:

<script type="application/ruby" class="sl_map">
 require "Microsoft.Maps.MapControl.dll"
 require "Microsoft.Maps.MapControl.Common.dll"
 include System::Windows
 include System::Windows::Controls
 include Microsoft::Maps::MapControl
 sm = me.silverlight_map
 sm.map_in_ironruby.mode = AerialMode.new(true)
</script>

Note that I kept the class name of the IronRuby-related script
tag as sl_map, which is similar to the ID of the XAML-related
script tag.

Now if you run the application, you’ll see the black background,
skewed 3-D angle and labeled aerial view, as shown in Figure 7.

One popular demonstration at the MIX09 conference was
Silverlight and Microsoft Bing Map integration with spinning
capabilities for the Map object. Let’s implement something
similar in IronRuby.

To implement this feature, you fi rst need to defi ne the Grid with
two columns using ColumnDefi nitions:

<Grid.ColumnDefinitions>
 <ColumnDefinition Width="200"/>
 <ColumnDefinition Width="1100"/>
</Grid.ColumnDefinitions>

Figure 7 Map Mode Set to Aerial with Labels Mode and with 3-D Projection

Figure 6 DLR-Based Bing Map Silverlight Application in Default Road Map Mode

Ghoda.Silverlight.0210.Lay6_49-55.indd 53 1/15/10 9:46 AM

www.msdnmagazine.com

msdn magazine54 Dynamic .NET

Next, add three buttons named Rotate Map, Pause, and Stop and
Reset, along with title text in the XAML fi le within the Border. All
of this is in the fi rst column on the Grid (see Figure 8).

Now add the Map object to the second column of the Grid:
<m:Map x:Name="map_in_ironruby"
 CredentialsProvider="AuthenticationKey"
 Width="800" Height="400" Grid.Column="1"
 HorizontalAlignment="Center">
 <m:Map.Projection>
 <PlaneProjection RotationX="-20" RotationY="0"
 RotationZ="0"/>
 </m:Map.Projection>
</m:Map>

In the next step, you’ll need to create some rather complex
XAML update code. I recommend creating the XAML file
using a development environment such as Visual Studio or
Expression Blend to take advantage of their editing and Intelli-
Sense features. Then you can copy the completed XAML to the
app.xaml file of your project.

Create a Storyboard with the name map_animation targeted for
the Map object named map_in_ironruby. (An excerpt is shown
in Figure 9. See the code download for this article for the entire
Storyboard code block.). The Storyboard defines the key-
frames for the PlaneProjection animation properties RotationZ,
RotationY, GlobalOff setX and GlobalOff setZ. Add the StoryBoard
as a UserControl resource.

Th e next step is to add the Click events to the inline Iron-
Ruby code to start, pause, resume and stop the animation. First
you need to add a reference to System.Windows.Media and
System.Windows.Media.Animation:

include System::Windows::Media
include System::Windows::Media::Animation

Disable the pause_resume button during the initialization pro-
cess of the application:

sm.pause_resume.is_enabled = false

Now implement the Click event of each button. Start with the
rotate_map button. First set the Map object to left horizontal align-
ment in order to best use the available space for the animation. Th en
set the RepeatBehavior property of the StoryBoard animation to

Forever and begin the animation. Finally, enable the pause_resume
button and set the button content to Pause:

sm.rotate_map.click do |s,e|
 sm.map_in_ironruby.horizontal_alignment = HorizontalAlignment.Left
 sm.map_animation.repeat_behavior = RepeatBehavior.Forever
 sm.map_animation.begin
 sm.pause_resume.is_enabled = true
 sm.pause_resume.content = "Pause"
end

Next, implement the pause_resume button Click event. Here,
depending on whether you’re in a paused state or a running state,
you want to either resume or pause the Storyboard animation and
change the button content:

sm.pause_resume.click do |s,e|
 strbtnContent = sm.pause_resume.content.ToString
 if strbtnContent == "Pause"
 sm.pause_resume.content = "Resume"
 sm.map_animation.pause
 else
 sm.pause_resume.content = "Pause"
 sm.map_animation.resume
 end
end

Finally, implement the stop_reset button Click event. Here you
stop the Storyboard animation, disable the pause_resume button
and reset the button content to Pause. You also reset the alignment
of the Map object:

sm.stop_reset.click do |s,e|
 sm.map_animation.stop
 sm.pause_resume.is_enabled = false
 sm.pause_resume.content = "Pause"
 sm.map_in_ironruby.horizontal_alignment = HorizontalAlignment.Center
end

Compile and run the project using Chiron /b command to see
the map with animation. Figure 10 shows the rotating map.

Targeting Predefi ned Locations
Now let’s highlight three predefi ned locations on the map: New
York, San Francisco and Vancouver. Th is is demonstrated in C#
as part of the documentation of the Microsoft Bing Map Control
for Silverlight CTP. I will show you how to implement this feature
using IronRuby.

First you need to update the inline XAML code to add three
additional buttons in a new section on the left side of the
screen, one for each location—New York, San Francisco and
Vancouver. Th ese are implemented much like the previous buttons. One
notable change is the addition of the Tag attribute to each Button
element. Th e Tag attribute defi nes specifi c location coordinates
and the zoom level of the map.

<StackPanel Grid.Column="0" Orientation="Vertical">
 <Border CornerRadius="20" Margin="0,50,0,5" Width="150"
 Background="DarkBlue" HorizontalAlignment="Center">
 <StackPanel Orientation="Vertical">
 <TextBlock Text="3D Rotation"
 HorizontalAlignment="Center"
 FontSize="12" Foreground="White" Margin="0,5,0,10"/>
 <Button x:Name="RotateMap" Height="25"
 Content="rotate_map" Width="100" Margin="0,0,0,10"
 Foreground="Black" VerticalAlignment="Center"
 HorizontalAlignment="Center" />
 <Button x:Name="pause_resume" Height="25"
 Content="Pause" Background="DarkGoldenrod"
 Foreground="Black" Width="100" Margin="0,0,0,10"
 VerticalAlignment="Center"
 HorizontalAlignment="Center" />
 <Button x:Name="stop_reset" Height="25"
 Content="Stop and Reset" Background="DarkGoldenrod"
 Foreground="Black" Width="100" Margin="0,0,0,10"
 VerticalAlignment="Center"
 HorizontalAlignment="Center" />
 </StackPanel>
 </Border>
</StackPanel>

Figure 8 Adding Controls to the Grid Object

<UserControl.Resources>
 <Storyboard x:Name="map_animation">
 <DoubleAnimationUsingKeyFrames BeginTime="00:00:00"
 Storyboard.TargetName="map_in_ironruby"
 Storyboard.TargetProperty=
 "(UIElement.Projection).(PlaneProjection.RotationZ)">
 <EasingDoubleKeyFrame KeyTime="00:00:00" Value="15"/>
 <EasingDoubleKeyFrame KeyTime="00:00:01" Value="0"/>
 <EasingDoubleKeyFrame KeyTime="00:00:02" Value="-15"/>
 <EasingDoubleKeyFrame KeyTime="00:00:03" Value="0"/>
 <EasingDoubleKeyFrame KeyTime="00:00:04" Value="15"/>
 </DoubleAnimationUsingKeyFrames>
 ...
 </Storyboard>
</UserControl.Resources>

Figure 9 Creating the Storyboard for Animation

Ghoda.Silverlight.0210.Lay6_49-55.indd 54 1/15/10 9:46 AM

55February 2010msdnmagazine.com

The following code snippet shows the
XAML code for adding a Button for the
New York location:

<Button x:Name="newyork" Height="25"
Width="100"
 Content="New York" Margin="0,0,0,10"
Foreground="Black"
 VerticalAlignment="Center"
HorizontalAlignment="Center"
 Tag="40.7199,-74.0030,0.0000 12.0000"/>

Th is attribute provides the coordinate
information for each location. When the
user clicks the button, this information
is used to retarget the map. See the code
download for the entire location-fi nder
buttons code.

Most applications have a title, and this
should be no diff erent. I added the title
“Microsoft Bing Maps Silverlight Control and IronRuby Integra-
tion” in the second column of the Grid by replacing the existing
Map element to place it under the StackPanel along with the title
TextBlock control:

<StackPanel Grid.Column="1" Orientation="Vertical">
 <TextBlock VerticalAlignment="Top"
 HorizontalAlignment="Center" FontSize="20"
 Foreground="Red" Margin="0,5,0,0"
 Text="Microsoft Bing Maps Silverlight Control and IronRuby
Integration" />
 <m:Map x:Name="map_in_ironruby" Width="800" Height="400"
 HorizontalAlignment="Center" Margin="0,50,0,20">
...

Now the presentation layer is complete. If you execute the
application at this point, you should see the additional three
buttons under the new Locate Location section. However, the map
will not be moved to the corresponding location if you click on any
of the newly added buttons. For that you need to implement code
behind for each button Click event.

Th e Click events are the same for all three buttons. Based on the
value of the Tag property of the corresponding clicked button, pass
those coordinates and zoom level as the view specifi cation to
create the new map view. Here I used the Split method to split the
coordinates and the zoom level and set the map view using the
SetView method of the Maps control. Th e new map view will show
the defi ned location:

sm.newyork.click do |s,e|
 tag_information = s.Tag.split
 location_Converter = LocationConverter.new
 location_info = location_Converter.ConvertFrom(tag_information[0].
ToString)
 sm.map_in_ironruby.SetView(location_info, tag_information[1]);
end

You also need to add the reference Microsoft .Maps.Map Control.
Design to the program to create a new map view.

include Microsoft::Maps::MapControl::Design

And that’s the fi nished application. As you can see, it would be
easy to customize the views, add other location targets and imple-
ment additional features.

Moving Forward
Before finishing the article, I would like to quickly introduce
the externalizing inline script code (XAML and IronRuby/
IronPython) approach.

To modularize your programming model, first copy the fi-
nal SilverlightMap.html file and rename it to SilverlightMap-
ExternalScript.html. Then cut and paste the inline XAML code
from the SilverlightMap-ExternalScript.html file to a new blank
text file and save as SilverlightMap.xaml file. Next, cut and paste
the IronRuby code from the SilverlightMap-ExternalScript.html
file to the new blank text file and save as SilverlightMap.rb file.

Now, update the XAML and IronRuby script tags of the
SilverlightMap-ExternalScript.html fi le with the src attribute
defi ning path of the external XAML and IronRuby fi les:

<html><head>
 <script src="/dlr/dlr.js" type="text/javascript"></script>
</head>
<body>
 <script type="application/xml+xaml"
 src="/samples/getting.started/SilverlightMap.xaml"
 id="sl_map" Width="1350" Height="575">
 </script>
 <script type="application/ruby"
 src="/samples/getting.started/SilverlightMap.rb"
 class="sl_map">
 </script>
</body> </html>

Finally, copy three new fi les—SilverlightMap-ExternalScript.
html, SilverlightMap.xaml and SilverlightMap.rb—to the Sample/
Getting.started Web server folder. Now if you browse the
SilverlightMap-ExternalScript.html fi le, you will get the same
rotating map with location-fi nding capabilities.

Please visit SilverlightStuff.net to read my article on the same application
created using the traditional approach (using Chiron.exe).

ASHISH GHODA is founder and president of Technology Opinion LLC, and associ-
ate director at a Big Four accounting fi rm. Visit his sites technologyopinion.com and
SilverlightStuff .net, or contact Ghoda directly at askashish@technologyopinion.com.

THANKS to the following technical experts for reviewing this article:
Laurence Maroney and Jimmy Schementi

Figure 10 3-D Map Animation

The Silverlight templates for
dynamic languages provide

core application fi les.

Ghoda.Silverlight.0210.Lay6_49-55.indd 55 1/15/10 9:46 AM

mailto:askashish@technologyopinion.com
www.msdnmagazine.com
http://SilverlightStuff.net
http://technologyopinion.com
http://SilverlightStuff.net

Untitled-1 1 1/19/10 4:29 PM

http://www.vslive.com

Untitled-1 1 1/19/10 4:29 PM

http://www.vslive.com

IN TE GRAT ING WINDOWS A Z U R E

Windows Azure Platform
for Enterprises

Cloud computing has already proven worthy of attention
from established enterprises and start-ups alike. Most businesses
are looking at cloud computing with more than just idle curiosity.
As of this writing, IT market research suggests that most enterprise
IT managers have enough resources to adopt cloud computing in
combination with on-premises IT capabilities.

Of course, there are people who are skeptical of cloud comput-
ing’s ability to deliver on the promises. Th is emerging solution is al-
most analogous to the creation of ARPANET (precursor to
Internet); many skeptical research institutions didn’t want to join
the initial network for fear of losing their private data. Once
scientists saw the benefi ts of data networking and the collaboration
it enabled, there was no stopping them, and the rest is history.
Today’s large enterprises, like the ARPANET skeptics, are in the
process of getting acquainted with the paradigm shift that is occur-
ring in how computing capabilities are acquired and operated.

Sensing industry trends and customer demand, Microsoft made
a huge bet on cloud computing by releasing the Windows Azure
platform and the necessary supporting services for building and

This article discusses:
• Windows Azure platform integration in the enterprise

• Software as a Service

• Platform as a Service

• Infrastructure as a Service

• Pricing of Windows Azure platform services

• Cost calculator for Windows Azure platform services

• Security in the Windows Azure platform

• Storage in the Windows Azure platform

Technologies discussed:
Windows Azure platform, ASP.NET, Software as a Service, Platform
as a Service, Infrastructure as a Service

Code download available at:
code.msdn.microsoft.com/mag201002Azure

Hanu Kommalapati

running industrial-strength services in the cloud. In this article, I
will discuss the Windows Azure platform at the architectural level
and intersect it with the needs of enterprise-class solutions.

Cloud Computing
I am sure there are several defi nitions of cloud computing, but the
one I like the most is: computing capability delivered as a utility
through Internet standards and protocols. Th is defi nition opens
up the possibilities for “public cloud” and “private cloud” concepts.
Public clouds, as the name indicates, are available for anyone who
wields a credit card. Private clouds are meant for the exclusive use
of a business or a consortium of businesses as identifi ed by the
private cloud’s mission statement.

Th e Windows Azure platform, Amazon Web Services, Google
App Engine and Force.com are a few examples of public clouds.
Any private datacenter run by a large enterprise can be called a
private cloud if it takes advantage of the unifi ed resource model
enabled by broader virtualization that treats compute, storage and
networking as a homogenous resource pool and takes advantage
of highly automated processes for operating the system.

Utility computing has been a dream of visionaries in the com-
puter automation space for as long as I can remember. Microsoft ’s
Dynamic Systems Initiative (DSI) and similar initiatives from
other vendors made bold attempts to help datacenter operators
provide utility-like characteristics: highly automated, self-managed,
self-optimizing and metered storage, networking and compute
cycles. While the vision was laudable, it saw mixed success.
Th e advent of virtualization made utility computing a reality.
Virtualization helped decouple the operating system and applica-
tions from physical hardware. It treats them as data, so automated
processes can be developed for on-demand streaming of operat-
ing system and other dependent resources to the target hardware.

To set the stage for a Windows Azure platform discussion, I will
briefl y look at the industry terminology in the cloud computing
space and map the Windows Azure platform to those terms so we
can readily comprehend it. Figure 1 shows the sandwich diagram of
the industry terminology and the mapping of the Windows Azure

msdn magazine58

Kommalapati.Azure.0210.Lay8_58-69.indd 58 1/15/10 12:07 PM

http://code.msdn.microsoft.com/mag201002Azure

59February 2010msdnmagazine.com

platform. I will look at various cloud service
types and their relative diff erences in detail
in the following sections.

Software as a Service
Soft ware as a Service (SaaS) is a soft ware de-
livery business model in which a provider or
third party hosts an application and makes it
available to customers on a subscription basis.
SaaS customers use the soft ware running on
the provider’s infrastructure on a pay-as-you-
go basis. Th ere are no upfront commitments, so
the customer is spared any long-term contracts.

Based on the contractual terms, customers
may elect to quit using the soft ware at any
time. Th e underlying infrastructure and the soft ware confi gura-
tion are invisible to the users, and, hence, customers have to settle
for the functionality that is provided out of the box. SaaS uses a
highly multi-tenant architecture, and user contexts are separated
from one another logically at both runtime and rest.

Th is multi-tenancy may be objectionable to some companies
due to the nature of their business, so providers may off er a physi-
cally isolated infrastructure for such customers and charge them
for the extra costs associated with maintenance of the soft ware
and the hardware. Microsoft Business Productivity Online Suite
(BPOS) and CRM Online are good examples of SaaS. Microsoft
also off ers dedicated hosting for these services for extra charge.

Collaboration applications that solve the same problem across
many enterprises have been very successful in the SaaS space.

Because the hardware and soft ware confi guration is transparent
to end users, there is minimal if any need for IT pro involvement.
Some SaaS applications can be customized by end users through
confi guration; however, most do not allow customization. As a
result, the footprint of the development staff in the context of the
SaaS application is also minimized.

SaaS can improve the time-to-market aspect of applications,
and in the process fi x the oft en-complained-about business-IT
alignment problems. During early stages of the SaaS adoption in
the enterprise, to the nightmare of enterprise architects, “shadow
IT” (a small team of spreadsheet-savvy programmers attached to
business units, for example) may distract from the enterprise-wide
initiatives. Th is is because SaaS empowers business units to bypass
IT procurement processes. Enterprise architecture teams need to

WINDOWS AZURE PLATFORM

Application Server

Massive Resource Pool

Compute Networking Storage

Commodity Hardware

Re
so

ur
ce

 M
an

ag
er

Se
rv

ice
s

Windows Azure is heading
toward providing a hybrid
platform.

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Figure 1 Windows Azure Platform Is a PaaS Offering

FABRIC CONTROLLER

COMPUTE RESOURCE POOL
Compute allocation of Web farm

Role color legend

Compute allocation of batch application

Respective roles have been reallocated
because of a rack power failure

Role Failure event sequence
 Event 1: roles in rack #1 fail health check
 due to rack level power failure
 Event 2: reallocated Web role #1 fails
 health check due to application issue
 Event 3: Fabric Controller now will allocate
 another Web role in a failure domain not shown

Stream OS
and application

delta images

Mgmt &
Instrumentation

rack #1

web role #1

worker role #1

Network
Switch

Power
Supply

rack #3

web role #2

worker role #1

Network
Switch

Power
Supply

rack #2

web role #1

Network
Switch

Power
Supply

rack #n

web role #3

worker role #2

Network
Switch

Power
Supply

Management

System Resource
Pool

Provisioning

Customer #n
Customer #1

VHD Repository

Failure domain #1 Failure domain #3Failure domain #2 Failure domain #n

power infrastructure

network infrastructure

Figure 2 Conceptual View of Compute Infrastructure (Windows Azure Setup May Be Different)

Kommalapati.Azure.0210.Lay8_58-69.indd 59 1/15/10 12:07 PM

www.msdnmagazine.com

msdn magazine60 Integrating Windows Azure

realize this and educate business units about the importance of
governance. Th ey also should design new governance processes
or modify the existing ones to accommodate SaaS.

Current IT environments may preclude small and midsize
enterprises from having the necessary capabilities to optimally
run their businesses because of the burden of huge IT invest-
ments. SaaS may provide to every company the same kind of
IT capabilities that are now affordable only by large enterprises.
Since SaaS doesn’t require heavy IT investments, it can level the
playing field for small companies, putting enterprise-class IT
capabilities within their grasp.

From the service provider perspective, any small company can
become a SaaS provider and compete with large soft ware houses.
Such companies now can focus on their core domain strengths
instead of outlaying scarce capital for acquiring and managing
hardware and soft ware infrastructure.

Platform as a Service
SaaS seems to be the right thing to do for all soft ware needs of a
company. However, every company is unique in its IT personal-
ity, resulting from legacy technology as well as from its particular
business domain. Finding a SaaS service for every line-of-business
need is oft en impossible, so companies need to continue building
applications. Platform as a Service (PaaS) fi lls the needs of those
who want to build and run custom applications as services. Th ese
could be ISVs, value-added service providers, enterprise IT shops
and anyone who needs custom applications. PaaS off ers hosted
application servers that have near-infi nite scalability resulting from
the large resource pools they rely on. PaaS also off ers necessary
supporting services like storage, security, integration infrastruc-
ture and development tools for a complete platform.

A service provider offers a pre-configured, virtualized applica-
tion server environment to which applications can be deployed
by the development staff. Since the service providers manage the
hardware (patching, upgrades and so forth), as well as applica-
tion server uptime, the involvement of IT pros is minimized.
Developers build applications and annotate the applications
with resource descriptors. Upon deployment, the provisioning
engine binds the necessary infrastructure capabilities declared
in the descriptors to the application. The resources may include
network endpoints, load balancers, CPU cores, memory and
software dependencies. On-demand scalability combined with
hardware and application server management relieves develop-
ers from infrastructure concerns and allows them to focus on
building applications. PaaS is generally suitable for brand-new
applications, as legacy applications often require extensive refac-
toring to comply with sandbox rules.

Infrastructure as a Service
Infrastructure as a Service (IaaS) is similar to traditional hosting,
where a business will use the hosted environment as a logical ex-
tension of the on-premises datacenter. Th e servers (physical and
virtual) are rented on an as-needed basis, and the IT professionals
who manage the infrastructure have full control of the soft ware
confi guration. Some providers may even allow fl exibility in hard-
ware confi guration, which makes the service more expensive when
compared to an equivalent PaaS off ering

Th e soft ware composition may include operating systems, appli-
cation platforms, middleware, database servers, enterprise service
busses, third-party components and frameworks, and manage-
ment and monitoring soft ware. With the freedom to choose the
application server comes fl exibility in choosing the dev tools as
well. Th is kind of fl exibility increases the complexity of the IT
environment, as customer IT professionals need to maintain the
servers as though they are on-premises. Th e maintenance activities
may include patching and upgrades of the OS and the application

ShoppingListService Defi nition
<?xml version="1.0" encoding="utf-8"?>
<ServiceDefinition name="ShoppingList">
<WebRole name="ShoppingList_WebRole">
<LocalResources>
<LocalStorage name="ShoppoingList_ImageCache" sizeInMB="100"
cleanOnRoleRecycle="false"/>
</LocalResources>
<InputEndpoints>
<InputEndpoint name="HttpIn" protocol="http" port="80" />
<InputEndpoint name="HttpsIn" protocol="https" port="443" />
</InputEndpoints>
<ConfigurationSettings>
<Setting name="DiagnosticsConnectionString" />
<Setting name="DataConnectionString" />
<Setting name="ShoppinglistOut"/>
</ConfigurationSettings>
</ WebRole>
< WorkerRole name="ShoppingList_WorkerRole">
<Instances count="2" />
<ConfigurationSettings>
<Setting name="DiagnosticsConnectionString" />
<Setting name="DataConnectionString" />
<Setting name="ShoppinglistIn"/>
</ ConfigurationSettings>
< WorkerRole />
</ServiceDefinition>

ShoppingListService Confi guration
<?xml version="1.0"?>
<ServiceConfiguration serviceName="ShoppingList">
</Role>
<Role name="ShoppingList_WebRole">
<Instances count="3" />
<ConfigurationSettings>
<Setting name="DiagnosticsConnectionString" value=
 "UseDevelopmentStorage=true" />
<!-- flip the commenting of the following two lines for application
storage needs on local dev fabric -->
<!--<Setting name="DataConnectionString" value=
 "UseDevelopmentStorage=true" />-->
<Setting name="DataConnectionString"
value="DefaultEndpointsProtocol=http;
AccountName=<<account name>>;AccountKey=<<account key>>" />
<Setting name="ShoppinglistOut" value="shoppinglistq"/>
</ConfigurationSettings>
</Role>
<Role name="ShoppingList_WorkerRole">
<Instances count="2" />
<ConfigurationSettings>
<Setting name="DiagnosticsConnectionString" value=
 "UseDevelopmentStorage=true" />
<!-- flip the commenting of the followign two lines for local dev fabric
-->
<!--<Setting name="DataConnectionString" value=
 "UseDevelopmentStorage=true" />-->
<Setting name="DataConnectionString"
value="DefaultEndpointsProtocol=http;
AccountName=<<account name>>;AccountKey=<<account key>>" />
<Setting name="ShoppinglistIn" value="shoppinglistq"/>
</ConfigurationSettings>
</Role></ServiceConfiguration>

Figure 3 Service Model for Web and Worker Roles

Kommalapati.Azure.0210.Lay8_58-69.indd 60 1/15/10 12:07 PM

61February 2010msdnmagazine.com

server, load balancing, failover clustering of
database servers, backup and restoration, and
any other activities that mitigate the risks of
hardware and soft ware failures.

Th e development staff will build, test and
deploy applications with full awareness of
the hardware and soft ware confi guration
of the servers. Oft en disaster recovery and
business continuity are the responsibilities
of the customer. One important benefi t of
IaaS is that it can allow the migration of
legacy applications to the cloud. Since the
fl exibility of IaaS allows the construction
of any confi guration, the portability of an
application among cloud providers is dif-
fi cult. Legacy application migration is the
sweet spot for IaaS, as it allows mimicking
the corporate infrastructure in the cloud.
Th e fl exibility of IaaS also enables new ap-
plications that require signifi cant control of soft ware confi gura-
tion. For example, some applications may require the installation
of third-party libraries and services, and IaaS allows such installa-
tion with no constraints.

Th e Windows Azure platform has all the benefi ts of PaaS, while
at the same time promising to be as fl exible as IaaS, as illustrated in
Figure 1. Th e Windows Azure platform combines large pools of
compute (commodity servers), networking and storage resources
into a utility computing environment from which customers can
draw resources on-demand and pay only for the usage. Typical
of cloud environments, the Windows Azure platform helps cus-
tomers avoid upfront capital outlays and allows the growth of IT
capabilities on an as-needed basis.

Windows Azure Platform
Th e Windows Azure platform provides a hosted application server
and the necessary storage, networking and integration infrastruc-
ture for building and running Windows applications. Th e Windows
Azure platform relies on large pools of commodity hardware in
creating the utility computing environment. Figure 2 shows the
Windows Azure platform resource model where virtualized stor-
age, network and compute resources are deployed on demand by
the provisioning policies set at deployment time. Th e Fabric Con-
troller is the brain of the entire ecosystem, with a set of dedicated
resources that aren’t part of the application resource pool. Since
the Fabric Controller can’t ever fail, it provides a highly redundant
hardware and soft ware environment.

Th e compute resource pool comprises commodity resources
that are made fault-tolerant by the Fabric Controller. Th e Fabric
Controller is architected for early detection of application failures,
and spawns additional instances to meet contractual service-level
agreements. Since the Windows Azure environment is a complete
platform for application hosting, it ensures systemic qualities of the
application by off ering virtually unlimited resources through on-
demand provisioning. Unused resources are returned to the pool,
thereby increasing utilization. Th e resources include compute

cycles, virtualized storage for persistence and virtualized network-
ing resources for dynamic reconfi guration of private and public
network routes. Th e physical confi gurations of these resources
are by design invisible to application architects and developers.

So, how do the application owners provision these resources?
Picking up the phone and calling an IT pro like we do in tradi-
tional on-premises environments is out of question, as the massive
Windows Azure platform datacenters are managed by a handful of
professionals who rely heavily on automation. Normal day-to-day
operations of the datacenter require no human intervention. Th e
Windows Azure platform enables application owners to provision
necessary resources through machine-readable models compris-
ing resource descriptors. In the Windows Azure platform, these
resource descriptors are called service models. Th ese service mod-
els specify the application resources and their dependencies suf-
fi cient for provisioning the complete runtime infrastructure with
no human involvement. Because of this automation, the provi-
sioning time of the application infrastructure is oft en less than fi ve
minutes. When you compare this with the procure-and-provision
approach of typical on-premises environments, you grasp the
power of cloud computing.

Compute
Th e compute part of the Windows Azure platform is responsible
for providing CPU cycles for executing applications. Applications
are hosted inside virtualized environments to prevent any physical
dependencies on the underlying operating system and hardware.
Loose coupling of applications is accomplished through virtualized
resources, which include local fi les, persistent storage (structured
and unstructured), and diagnostic and instrumentation resources.
Th e hosting environment is implemented as a virtual machine, thus
any application failures won’t impact other applications running
on the same physical hardware.

Applications are deployed into the Windows Azure platform as
packages of roles and associated executable code and resources. An
Azure role describes the characteristics of the hosting environment

Azure Tables
and Blobs

SQL Azure

N/C N/C

N/C

N/C

N/C

N/C = No Charge

Ingress

Egress

In
gr

es
s

In
gr

es
s

In
gr

es
s

Eg
re

ss

Eg
re

ss

Eg
re

ss

Messaging
Charges Messaging Charges

Storage Usage +
Transaction Charge

SQL DB Usage

Web
Browser

Server Usage
Charge

Batch VMs

VM #1

VM #n

Transaction
Charge

Queues

AppFabric

On-Premises Systems

Server Usage
Charge

Web VMs

VM #1

VM #n

Figure 4 Windows Azure Platform Application Charge Model

Kommalapati.Azure.0210.Lay8_58-69.indd 61 1/15/10 12:07 PM

www.msdnmagazine.com

msdn magazine62 Integrating Windows Azure

declaratively. When a deployed application is activated, the Azure
provisioning environment parses the service model, selects a pre-
confi gured virtual machine (VM) image based on the role type,
copies the application bits to the VM, boots the machine and starts
the necessary application services. Th e service defi nition shown in
Figure 3 represents a Shopping List application, used as a refer-
ence throughout this article.

Th e Shopping List application described in Figure 3 requests three
instances of the Web role and two instances of the worker role. Th e
Web traffi c to the multiple instances of a Web role is automatically
load-balanced, and all three instances will be provisioned with SSL as
well as HTTP endpoints per the service model description. To avoid
the total failure of the application, the Fabric Controller spreads the
allocations across many failure domains. Th e failure domain organi-
zation is lot more complex than the simplifi ed view shown in Figure
2. For simplicity’s sake, you can consider each server rack with the
associated network switch and power supply as one failure domain.

Per Figure 2, the Fabric Controller initially allocated one Web
role from each failure domain–racks #1, #3 and #n. I will look at
the reliability of the entire Windows Azure compute layer from the
perspective of a couple of hypothetical events. During event #1, Web

role #1 and worker role #1 stop responding as a result of the rack’s
power failure. Th e Fabric Controller starts the provisioning pro-
cess of Web role #1 and worker role #1 in the available racks–rack
#2 and rack #3. Sometime later, event #2 happens, during which
the reallocated Web role #1 fails the health check due to an applica-
tion failure. Now the Fabric Controller starts allocating Web role
#1 to one of the other available racks.

During the course of these events, application availability isn’t
impacted. Th e Web page requests continue to be served by at least
two Web roles, while at least one worker role continues to pull
transactional items from the queues and to write to Windows Azure
Storage. Th e Fabric Controller strives to attain the equilibrium of
three healthy Web role instances and two worker roles instances
at any given instance of time. In reality, the racks may be equipped
with redundant power supplies and network switches, hence the
role recycling and reallocation may oft en occur due to application
issues or scaling up to meet scalability goals.

The Shopping List service model requested two worker roles
to avoid a single point of failure. Even though the Web tier and
the batch tier are decoupled through Windows Azure Queues,
it’s still a good practice to request at least two worker roles for

hosting time-sensitive, mission-critical
batch services. You may just get away with
one worker role if the hosted service isn’t
time-sensitive.

Figure 1 indicates that the Windows Azure
platform is striving to give the benefi ts of PaaS
but at the same time is capable of attaining
the fl exibility of IaaS. Th is is enabled by the
policy-based deployment model manifested
by Web roles, worker roles, CGI roles and a
multitude of other roles to come in the fu-
ture. Th e list of supported roles will continue
to grow to satisfy the diverse application and
deployment needs of customers.

Windows Azure Capability Charge Remarks

Server Usage Small: $0.12 /service-hour
Medium: $0.24/service-hour
Large: $0.48/service-hour
XLarge: $0.96/service-hour

The roles with active applications determine the charges.
Small : (1.6Ghz), 1.75GB memory (moderate IO capacity)
Medium: (1.6Ghz), 3.5GB memory
Large: (1.6Ghz), 7.0GB memory
XLarge: (1.6Ghz), 14.0GB memory

Windows Azure Blobs and Tables $0.15/GB Daily average measured during each billing cycle. See details on how the
charges are computed, as it requires more elaboration.

Transactions $0.01/10K transactions Create, Read, Update and Delete into Windows Azure Queues, Blobs and
Tables is considered a transaction.

SQL Azure: Web Edition $9.99/month (1GB RDBMS) Metadata of a large application or product catalog of a small e-commerce
Web site that sells a few hundred items.

SQL Azure: Business Edition $99.99/month (10GB RDBMS) Useful for medium businesses. Or, by data sharing, it is possible to build
applications with large data storage needs.

AppFabric $0.15/100K message operations A message operation may be a service bus message, an access control
token request or a service management API call.

Ingress GB $0.10/GB ($0.30 in Asia) Only the data transferred in and out of the data center will be billed.

Egress GB $0.15/GB ($0.45 in Asia) Only the data transferred in and out of the data center will be billed.

Figure 5 Windows Azure Pricing

WINDOWS AZURE DATACENTER

Web
Pages

and Web
Services

Process
Shopping

Lists
Queued Lists

Azure
Blobs &
Tables

Shopping List
Client (Web

Browser)

On-Premises Support, Reporting
and Merchandising Systems

Business
Events

Technology
Events

Product and
Marketing
Updates

Business
Events

Technology
Events

Product and
Marketing
Updates

Figure 6 Shopping List Application on the Windows Azure Platform

Kommalapati.Azure.0210.Lay8_58-69.indd 62 1/15/10 12:07 PM

63February 2010msdnmagazine.com

Cost-Oriented Architecture for the Cloud
Architecture decisions can have profound impacts on the econom-
ics of operations for small and large enterprises. Even though cloud
computing is about IT agility, operating-expense considerations of
the enterprises need to be taken into consideration while architect-
ing the solution. Th e architecture of a cloud application needs to
deliver functionality and systemic qualities (scalability, availabil-
ity, reliability and performance) while at the same time optimiz-
ing operational expenses. In on-premises situations, application
architects rarely pay attention to the cost of storage, the network
bandwidth or the cost of compute cycles, as these are capital ex-
penses incurred at the organization level.

As an example, optimizing application storage oft en isn’t on the
top of an architect’s tasks, as storage carrying costs aren’t part of the
operational expenditure. Th e top priority for on-premises systems
is to deliver important systemic qualities within the allocated bud-
get. Architecting systems for optimal operating expense becomes
an important element of the soft ware development process in the
context of cloud computing.

I will look at the cost model of the Windows Azure platform from
the perspective of the Shopping List application as shown in Figure
4. Th e diagram shows the logical architecture view of the Shopping
List with the arrows indicating data movement. Th e dashed arrows
indicate intra-datacenter bandwidth consumption, while the solid
lines show the data movement in and out of the cloud datacenter.

Th e Windows Azure platform only
considers ingress and egress charges
for data transfer, ignoring the local
data transfers inside a datacenter.
Any data written to Windows Azure
Queues won’t incur any bandwidth
or storage charges, as the storage con-
sumption by queues is highly tran-
sient. However, the queues will incur
per-transaction fees. Peeking, reading
or writing a queue item is considered
a transaction.

Windows Azure platform server us-
age charges are based on the number
of roles and the amount of time an ap-
plication is deployed. Th at means that,
even if the application has no requests
from end users, the Windows Azure
platform billing system will charge
per instance-hour for both the role
states “suspended” and “started.” So
it’s advised to proactively trim down
the number of active roles based on
application demands. At the moment,
this is a manual process; however, you
might be able to auto-scale the appli-
cation based on application scalabil-
ity patterns by leveraging diagnostic
data and the service management
API. Use of Windows Azure Tables,

Queues and Blobs will incur storage carrying costs, charged on a
monthly basis, per each GB on the record. Please refer to Figure
5 for Windows Azure pricing that was publicly announced at the
time of this writing.

Windows Azure platform pricing is straightforward with the
one exception of storage used by Blobs and Tables. An account’s
Windows Azure Storage usage is measured each day during a bill-
ing cycle and a daily average is computed. Th e charge will be com-
puted by multiplying this daily average by $0.15/GB. For example
if you store 20GB on day one, add 10GB on day two, add 5GB on
day three, and delete 5GB on day four, with no activity during the
rest of the billing cycle, the price will be computed as shown below:

((20 +10 + 5 – 5)/30) * 0.15 = $0.15

Th is assumes a 30-day billing cycle. Daily sampling of storage
will make sure that applications with highly transient storage needs
will still pay for their storage usage, unlike a system that measures
only at the end of the billing cycle.

As mentioned earlier, architecture is an important factor in the
monthly operating cost of an application. For instance, if an ap-
plication generates lots of data and only the latest data—say the
last two weeks—is needed for the functionality of the application,
the architecture can be tweaked to delete the unneeded data or to
periodically transfer it to on-premises systems. You may be better
off by paying a onetime bandwidth cost than incurring perpetual
storage costs. Th e same can be true with the reference data that is

Figure 7 Windows Azure Operating Expenses Calculator for an E-Commerce Application

Kommalapati.Azure.0210.Lay8_58-69.indd 63 1/15/10 12:07 PM

www.msdnmagazine.com

msdn magazine64 Integrating Windows Azure

no longer part of the active data set. Th is approach may work well
for companies that have already invested in data archival capacity.

The Application Scenario
I will look at various aspects of the Windows Azure platform in
the context of an industrial-strength e-commerce scenario: the
Shopping List application. I will focus on creating a grocery list
and saving it for later use while shopping at the store. Th e Web UI
composes the shopping list and uses Web services to save it to
Windows Azure Storage. For scalability, the Web tier writes shop-
ping lists to a Windows Azure Queue; periodically, a batch process
polls the lists from queues and saves them to Windows Azure
Tables. I will use Windows Azure-based authentication and role-
based security to demonstrate real-world solution aspects.

In the context of the cost-oriented architecture discussed previ-
ously, various decisions will impact monthly operational expenses.
Here are a few aspects of a system that must be considered before
proceeding with the architecture:
1. Growth rate of reference data
2. Growth rate of transactional data
3. Capture rate of behavioral profi ling data
4. Growth rate of business event data
5. Capture rate of system event data
6. Media content related to products
7. Using queues vs. direct interaction with persistent storage

My Shopping List scenario didn’t include much media content,
so that wasn’t a big factor in the cost equation, but it may be very
important to consider for content sites that deliver videos, imag-
ery and audio streams. Figure 7 shows for a typical application the
monthly operational cost on the Windows Azure platform. Th e
spreadsheet doesn’t include the personnel costs for development,
operational support and end user support.

A cloud computing environment will reduce the number of
operational support staff , so this should be factored in when compar-
ing the ROI between on-premises and the cloud. Also, it’s important
to include power and depreciated capital expense per application
in the equation for ROI. Current on-premises application cost
models oft en don’t include these expenses, as it’s very diffi cult to
break down the power consumed on a per-application basis. Th e
same is true for cooling and fl oor space. ROI calculators can use
educated guesses in the absence of objective cost breakdowns.

Th e simple cost calculator shown in Figure 7 estimates the
operating expense of applications hosted on the Windows Azure
platform. Th is Microsoft Excel-based tool allows various input
parameters of a typical e-commerce application, and it computes
the monthly operational cost using the Windows Azure platform

pricing table shown in Figure 5. Please
keep in mind that the default parameters
used in the tool are fi ctitious; you need to
take your own system into consideration
before making decisions based on the tool
output. Th e cost calculator is driven by the
number of visitors per month and assumes
a certain number of page views and trans-
actional and event data creation. Th e Win-

dows Azure platform team created a more comprehensive tool that
calculates the monthly cost of an application and also compares the
TCO of on-premises applications with that of Windows Azure. Th e
Windows Azure TCO tool can be accessed at microsoft.com/windowsazure/tco.

As shown in Figure 7, our fi ctitious application generates 9000GB
of data in a given month, which costs about $1,350 per month if we were
to store this inside Windows Azure Tables. Please keep in mind that
Figure 7 only shows point-in-time storage, and event-data charges can
accumulate as the application continues to operate. Such costs can be
optimized by tuning the amount of event data captured as an applica-
tion matures operationally. Th e cost calculator is driven by the number
of visitors per month and uses a hypothetical number of 10 Web roles
and 3 worker roles. Th e total monthly bill is $3,571.

<system.web>

<authentication mode="Forms" />
<!-- Membership Provider Configuration -->
<membership defaultProvider="TableStorageMembershipProvider"
userIsOnlineTimeWindow="20">
<providers>
<clear/>
<add name="TableStorageMembershipProvider"
type="Microsoft...AspProviders.TableStorageMembershipProvider"
description="Membership provider using Azure storage"
applicationName="ShoppingList"
...
minRequiredNonalphanumericCharacters="0"
requiresUniqueEmail="true"
passwordFormat="Hashed"/>
</providers>
</membership>
<sessionState mode="Custom"
customProvider="TableStorageSessionStateProvider">
<providers>
<clear />
<add name="TableStorageSessionStateProvider"
type="Microsoft...AspProviders.TableStorageSessionStateProvider"
applicationName="ShoppingList"/>
</providers>
</sessionState>
<roleManager enabled="true"
defaultProvider="TableStorageRoleProvider"
cacheRolesInCookie="true"
cookieName=".ASPXROLES"
cookieTimeout="30"
...
cookieProtection="All">
<providers>
<clear/>
<add name="TableStorageRoleProvider"
type="Microsoft....AspProviders.TableStorageRoleProvider"
description="Role provider using table storage"
applicationName="ShoppingList" />
</providers>
</roleManager>
...
</system.web>

Figure 9 Web.confi g Changes for Windows Azure
ASP.NET Providers

Figure 8 Windows Azure ASP.NET Providers

WEB
BROWSER

AZURE WEB ROLE

SessionProvider

ProfileProvider

RoleProvider

MembershipProvider

Az
ur

e
SD

K

AS
P.

NE
T

W
eb

 P
ag

es

REST Web
Sevices

HTTP

AZURE STORAGE

Blobs

Tables

Queues

Kommalapati.Azure.0210.Lay8_58-69.indd 64 1/15/10 12:07 PM

http://microsoft.com/windowsazure/tco

65February 2010msdnmagazine.com

Alternatively, the application can be archi-
tected to channel the event data by paying
onetime bandwidth costs ($0.10/GB trans-
ferred out) to an already-depreciated on-
premises storage system, if it exists. Similar
strategies can be applied to transactional and
behavioral profi ling data to avoid cumula-
tive storage charges.

Compute charges aren’t cumulative in na-
ture and thus have less impact on the overall
operational expenditure of the application.
However, there is opportunity to tune the
number of active Web and batch role instanc-
es based on the observed scalability profi le
of the application, to get marginal relief on
the operating expenses. Between compute
and storage charges, compute usage can be
controlled at any given time, whereas stor-
age cost depends on architectural decisions
that can’t be undone easily once the applica-
tion is built. So my suggestion is to get your
persistence architecture right the fi rst time.

In addition to the cost model of the
application, large enterprises will pay close
attention to application security, which I
will explore now.

Compute Security
Enterprises are finicky about application
and data security in the cloud. While se-
curity of the datacenter, infrastructure and
the operating system are taken care of by
Microsoft, application security is still the responsibility of the
application owners. I will look at application security from the
perspective of my Shopping List Web application. Securing a
Windows Azure platform application is similar to its
on-premises counterpart. The Windows Azure platform
provides various system components to help developers integrate
security into applications. These system components allow
basic, self-contained authentication and authorization to feder-
ated scenarios suitable for large enterprises.

Basic Identity
A basic identity model, as the name suggests, implements a self-
contained identity architecture to meet the needs of one appli-
cation or a co-located group of applications that share the same
set of users and are tightly coupled to the same identity system at
the implementation level. Th e Windows Azure platform samples
contain a set of ASP.NET providers (membership, role, profi le and
session) that can be used for implementing a basic identity solution.
Windows Azure ASP.NET providers are implemented on Windows
Azure Storage, which includes Windows Azure Tables and Blobs.
Th ese providers implement the ASP.NET provider contracts and
leverage StorageClient APIs that are part of the Windows Azure
platform SDK. Th e schematic of the providers is shown in Figure 8.

In order for the applications to use
Windows Azure ASP.NET providers, the
Web.confi g fi le needs to be modifi ed to
remove the default providers and include
new ones. Th e confi guration changes shown
in Figure 9 are similar to the changes that
must be made for custom ASP.NET provid-
ers in on-premises situations.

Once the ASP.NET providers are con-
fi gured, authentication, authorization and
user profi les can be implemented similarly
to traditional ASP.NET applications. Note
that the confi guration in Figure 9 contains

a Windows Azure storage-based session provider, which allows
the storage of session states on a durable medium. Since Windows
Azure load balancers don’t support sticky sessions, storing session
data on Windows Azure storage off ers a better user experience
through session-based personalization. Th e basic identity model
is suitable for applications that have user identity lifecycles (user
account creation, usage and closure) that begin and end in the
same application. Basic identity implementation may be elected
for a variety of reasons, including the following:

• An application wants to retain the complete ownership of the
user identity records

• A lack of infrastructure for implementing federated identity
store and supporting services

• Applications with a short lifespan (for example, marketing
contests and promotions) that require user registration
Windows Azure ASP.NET providers can also be used to

authenticate users from AJAX as well as Silverlight applications.
The AJAX callable AuthenticationService, ProfileService and
RoleService classes, located inside System.Web.Extensions.dll,
can be published as .svc endpoints through the Windows Azure
Web role. Keep in mind that these services require ASP.NET
compatibility for accessing HTTP context-specific data. The
article titled “Build Line-Of-Business Enterprise Apps with

3. Display login

3. Display login

4. Present credentials

4. Present credentials

5. Issue token (SAML)

5. Issue token (SAML)

Pre-established trust
relationship

Pre-established trust
relationship

Partner users get
authenticated by STS #2

On-premise users get
authenticated by STS #1

WIF STS #2
(PARTNER)

STS #1 (ON-PREMISE)

WIF ADFS v2 AD

1. Request access
2. Redirect to STS
6. Send token

AZURE WEB ROLE

WIF
Shopping List

ASP.NET
Web Pages

WEB BROWSER

Figure 10 Multiple Token Services Can Be Registered with Windows Azure Applications

FEDERATED TRUST

Application Name

Claim Types Required

Issuer Endpoint

Issuer X509 Certificate

Figure 11 Federated Trust Descriptor

Kommalapati.Azure.0210.Lay8_58-69.indd 65 1/15/10 12:07 PM

www.msdnmagazine.com

msdn magazine66 Integrating Windows Azure

Silverlight, Part 2”(msdn.microsoft.com/magazine/dd434653), gives detailed
information on setting up the above services to be called from
Silverlight or AJAX.

Federated Identity Model
Federated identity is necessary for applications that include
supply chain, value chain, collaboration and social networking, as
well as applications that integrate popular identity stores on the
Internet. The Windows Azure ASP.NET stack can be combined with
Windows Identity Foundation (WIF) to integrate with one or
more security token service providers. WIF works in conjunction
with the pre-established trust relationships enabled by WS-Trust
and WS-Federation. Figure 10 shows a conceptual view of the
Shopping List application working with two token providers—
one on-premises and the other a fulfillment partner.

Th e trust describes the Secure Token Service (STS) endpoints
and the necessary X509 certifi cates for signing token requests
and responses. Figure 11 shows the
trust schematic, the XML representation
of which will be included in the Shop-
ping List application confi guration at the
time of deployment. Users get authen-
ticated in their respective systems and
the resulting Security Assertion Markup
Language (SAML) token gets forwarded
to the requesting application.

As shown in Figure 10, when a user
accesses secure Web content on the
Windows Azure platform-hosted Shopping
List application, WIF forwards the request
to a Shopping List STS URL present in the
trust confi guration. Th e Shopping List STS
gathers credentials, authenticates users
against Active Directory, constructs a SAML
token with the help of Active Directory
Federation Services (ADFS, formerly
“Geneva Server”) and forwards it to the
Shopping List application via the Web

browser. WIF running inside the Shopping
List site on Windows Azure will extract SAML
claims and perform authorization checks.

When multiple STSes are involved, a Web site
will have to implement token translation logic
for converting diverse tokens into a canonical
format. To minimize the impact of introducing
a new STS into the system, the token transla-
tion logic can be externalized or encapsulated
into a component that can be modifi ed with-
out impacting the applications that consume
them. Figure 12 shows the token translation
schematic that works in conjunction with WIF.

Scenarios such as the following will be
enabled by the federated identity model:
• Storage of identity records on-premises
for regulatory compliance

• Leveraging the existing on-premises application security
infrastructure

• Integrating with partners in the value chain and supply chains
• Single sign-on between the on-premises and the Windows

Azure platform application
Oft en, large enterprises have already implemented authentica-

tion services and directory servers that need to be leveraged for
securing applications. Th e Windows Azure platform allows lever-
aging of the cloud for expedited application deployment while at
the same time taking advantage of the existing infrastructure for
security. Also, the Windows Azure platform by design allows the
use of federated identity that enables various integration scenarios
across business partners and value chains.

Windows Azure Storage
Applications and services deployed on the Windows Azure
platform may use Windows Azure Storage for persistence of

WEB APPLICATION

Token translation
encapsulation

WIF

Claim list for
application

authorization

SAML tokenSAML token from STS 2

SAML token from STS 1

SA
ML to

ken
 fro

m ST
S 3

Dynamic STS
endpoint

configuration
logic

Figure 12 Federated Identity System with Multiple Token Providers

Storage Notes

Storage Notes

Fabric Controller

Fa
br

ic
Ag

en
t

P2
P

St
or

ag
e

In
te

rfa
ce

STORAGE SERVICE

9 1411

1

Applications

An object (say customer1) initially on
3 replicas: nodes 4, 11 and 14

Storage service copies customer1 object to nodes 2 and 8
upon the failure of nodes 4 and 11

Di
sk

 A
rra

y

Requests from
other nodes

842 3 5 6 7

10 12 13 15 16

REST Interface

REST
Interface

REST
Interface

Figure 13 Storage Service

Kommalapati.Azure.0210.Lay8_58-69.indd 66 1/15/10 12:07 PM

http://msdn.microsoft.com/magazine/dd434653

ENTERPRISE

SNMP

POP

TCP

UDP

2IP

SSL

SFTP

SSH

HTTP

TELNET

EMULATION

FTPSMTP

WEB
UI

Internet Connectivity for the Enterprise

PowerSNMP for ActiveX and .NET
Create custom Manager, Agent and Trap applications with a set
of native ActiveX, .NET and Compact Framework components.
SNMPv1, SNMPv2, SNMPv3 (authentication/encryption) and
ASN.1 standards supported.

Since 1994, Dart has been a leading provider of high quality, high performance Internet connectivity components supporting a wide
range of protocols and platforms. Dart’s three product lines offer a comprehensive set of tools for the professional software developer.

PowerWEB for ASP.NET
AJAX enhanced user interface controls for responsive ASP.NET
applications. Develop unique solutions by including streaming file
upload and interactive image pan/zoom functionality within a page.

Download a fully functional product trial today!
Ask us about Mono Platform support. Contact sales@dart.com.

PowerTCP for ActiveX and .NET
Add high performance Internet connectivity to your ActiveX, .NET
and Compact Framework projects. Reduce integration costs with
detailed documentation, hundreds of samples and an expert
in-house support staff.

SSH
UDP
TCP
SSL

FTP
SFTP
HTTP
POP

SMTP
IMAP
S/MIME
Ping

DNS
Rlogin
Rsh
Rexec

Telnet
VT Emulation
ZIP Compression
more...

Untitled-1 1 1/11/10 11:10 AM

mailto:sales@dart.com
http://www.dart.com
http://www.dart.com
http://www.dart.com

msdn magazine68 Integrating Windows Azure

unstructured and semi-structured content. Windows Azure
Storage comprises three fundamental capabilities necessary for
building industrial-strength applications and services: Tables, Blobs
and Queues. Windows Azure Storage is a massively scalable and
highly reliable persistence mechanism that is also accessible to the
applications hosted on-premises through industry-standard Web
services interface like REST. For on-the-wire privacy, Windows
Azure Storage supports SSL (HTTPS)-based access in addition to
the standard HTTP protocol. Scalability and other systemic qualities
are achieved through a large storage farm comprising commodity
server hardware and disk arrays, which is managed by Windows
Azure Storage soft ware. Th e storage access is load-balanced au-
tomatically across a set of nodes, for scalability and availability.
Each node is responsible for a fi nite amount of physical storage.
Access to storage outside a node’s scope is accomplished through
a peer-to-peer interface. Th e reliability is achieved through the
redundancy of the stored entities (such as ShoppingList) on
multiple nodes. Th e storage soft ware makes multiple replicas
(three at the time of this writing) of the data automatically once
a write occurs. Storage supports atomic transactional writes, and
the transaction will complete only aft er all the replicas are written
to the drives. Figure 13 shows a collection of commodity storage
nodes forming the Windows Azure Storage Service.

While being used, any storage drive anywhere may fail, the pos-
sibility of which is shown by the red “X” on node numbers 4 and
11. Once the storage service identifi es a failed drive, it replicates the
data from a functioning drive to a new node. Th e storage service
is always compliant with the replica policies at any given point in
time. As mentioned earlier, the request traffi c from applications
will be load-balanced across multiple nodes.

Th is kind of architecture will help the massive scales required
by public cloud PaaS off erings such as the Windows Azure
platform. As shown in Figure 13, let us assume that nodes 4, 11
and 14 own the initial three replicas of a piece of data. In the event
of the failure of nodes 4 and 11, node 14 will continue servicing the
requests directly, as well as quickly re-replicating the data to at least
two additional nodes (node 2 and 8) to keep the data at a healthy
number of replicas.

Storage Security
Windows Azure Storage relies on Hash-based Message Authenti-
cation Code (HMAC) for authenticating the REST Web requests.
Th e shared, secret key associated with the Windows Azure Storage
project is combined with the HTTP request in computing a 256-
byte hash that gets embedded as an “authorization” header into the
Web request. Th e same process is repeated on the server to verify

[DataServiceKey("TableName")]
Public class StorageTable
{
 Private string _tableName;
 Public string TableName
{
 get { return this._tableName; }
 set { this._tableName = value; }
}
}

Public class Customer: TableServiceEntity
{
 Public string Name { get; set; }
 Public string CustomerID { get; set; }
 public Customer()
{
 PartitionKey = "enterprise";
 RowKey = string.Format("{0:10}_{1}", DateTime.MaxValue.Ticks –
 DateTime.Now.Ticks, Guid.NewGuid());
}
}
CloudStorageAccount _storageAccount = CloudStorageAccount.FromConfigurati
onSetting("DataConnectionString");

Public void CreateMultipleCustomers(List<Customer> customers)
{
 TableServiceContext tsc = new
 TableServiceContext(_storageAccount.TableEndpoint.AbsoluteUri,
 _storageAccount.Credentials);
 foreach (Customer cust in customers)
{
 tsc.AddObject("customers", cust);
}
try
{
 DataServiceResponse resp = tsc.SaveChanges(SaveChangesOptions.Batch);
 foreach (ChangeOperationResponse cor in resp)
{
 if (cor.Error != null)
{
//cor.Headers["Location"] can be parsed to find out the failed
//requests which can be retried after correcting the error condition

}
}
}
catch (Exception ex){ //do something with the exception }
}

protectedvoid linkCreateTables_Click(object sender, EventArgs e)
{
 labelStatus.Text = string.Empty;
try
{
 CreateTable("customers");
 CreateTable("products");
}
catch (DataServiceRequestException ex)
{
 labelStatus.ForeColor = System.Drawing.Color.Red;
 labelStatus.Text = "Error: Table creation error : " + ex.Message;
}
}
//Use ADO.NET services directly to create an Windows Azure Table
Public void CreateTableUsingContext(AzureStorageTable storageTable)
{
 TableServiceContext tsc = new
 TableServiceContext(_storageAccount.TableEndpoint.AbsoluteUri,
 _storageAccount.Credentials); tsc.AddObject("Tables", storageTable);
try
{
 DataServiceResponse resp = tsc.SaveChanges(SaveChangesOptions.None);
//handle errors
}
catch (Exception ex){//do something here}
}
//much simpler way of creating an Windows Azure Table
 publicvoid CreateTable(string tableName)
{
CloudTableClient ctc = _storageAccount.CreateCloudTableClient();
try
{
 ctc.CreateTable(tableName);
}
catch(Exception e) { //handle exception }
}

Figure 14 Pseudo-Code that Shows the Authenticated Creation of Windows Azure Tables and Data

Kommalapati.Azure.0210.Lay8_58-69.indd 68 1/15/10 12:07 PM

69February 2010msdnmagazine.com

the authenticity of the request. Windows Azure Table, Queue and
Blobs all follow the same authentication process, while the payload
and the target URLs are diff erent for each of the storage types. Th e
following are the URLs for accessing the above three storage
capabilities under the project, say “hkshoppinglist”:

• http(s)://hkshoppinglist.blob.core.windows.net/

• http(s)://hkshoppinglist.queue.core.windows.net/
• http(s)://hkshoppinglist.table.core.windows.net/

Th e code sample in Figure 14 shows the creation of multiple
Windows Azure Tables as a part of the storage preparation for ap-
plication deployment.

Using Windows Azure Tables as an example, I will show some
simple ways of preparing Windows Azure Storage for transactional
population of data. The code samples show the creation of
“customers” and “products” tables using TableServiceContext as
well as CloudTableClient to illustrate the fl exibility of the REST-
based interaction. In fact, you can also craft a raw payload, attach
HMAC to the Web request and do an HTTP POST to the table
URL, but it requires lot of code and should only be done as an
academic exercise. Th e recommended approach is to use Storage-
Client, which is part of the Windows Azure SDK.

Th e CreateTableUsingContext function uses the AzureStorageTable
class to generate the table creation payload with the help of ADO.NET
Data Services. TableServiceContext automatically generates HMAC
and attaches to the request using the key contained in the CloudStor-
ageAccount.Credentials property.

Windows Azure Table storage allows batch
transactions, as shown in the function Cre-
ateMultipleCustomers in Figure 14. Th e
batch should not exceed 100 operations in
a given change set, and a single batch should
not exceed 4MB in size. For more details,
please refer to the Windows Azure Stor-
age documentation. Batch transactions are
only allowed with the entities belonging to
the same partition.

Credentials necessary for the generation
of HMAC are specifi ed in the service con-
fi guration of the respective Windows Azure
role. Th e following is the format of the con-
nection string for local storage and the cloud:

Local storage:
<Setting name="DataConnectionString"
value="UseDevelopmentStorage=true"/>

Cloud storage:
<Setting name="DataConnectionString"
value="DefaultEndpointsProtocol=
http;AccountName=
<your account>;AccountKey=<your account key"/>

Th ere is no notion of role-based security
in Windows Azure Storage; so an authenti-
cated request will have complete access to the
storage in the context of the storage project. An
exception to this is the blob container, which can
be public (anonymous) or private. Authoriza-
tion is the responsibility of the application that
consumes the storage services.

Wrapping Up
In this article I only scratched the surface of the Windows Azure
platform. I am sure there will be plenty of coverage in the future
about Microsoft SQL Azure, AppFabric, various server roles and
other security scenarios not covered here. Th e Windows Azure
platform is a cloud computing platform that is architected to
enable on-demand utility computing for developing and hosting
applications and services.

Large pools of commodity hardware are made highly reliable
by soft ware through a high degree of automation. Th e economic
advantages of massive scales are passed back to consumers through
a low subscription fee. Subscribers will be charged based on the
usage of bandwidth, storage and compute cycles over a monthly
billing cycle. Th e Windows Azure platform comes with the platform
components necessary for building enterprise-class applications
and services with no upfront commitment of capital or long-term
contracts.

HANU KOMMALAPATI is a platform strategy advisor at Microsoft , and in this role
he advises enterprise customers in building scalable line-of-business applications
on the Silverlight and Windows Azure platforms.

THANKS to the following technical experts for reviewing this article:
Vittorio Bertocci, Brad Calder, Ryan Dunn and Tim O’Brien

Accelerate from
3.5 to 4 with this
must-have book.

 Ramp up your
knowledge.

Available at booksellers everywhere.

978-0-470-50225-9

Ac
3.
m

978-0-470-50225-9

Christian Nagel, Bill Evjen, Jay Glynn, Karli Watson, Morgan Skinner

Wrox Programmer to Programmer™

Join the discussion @ p2p.wrox.com

Professional

C# 4 and .NET 4

Kommalapati.Azure.0210.Lay8_58-69.indd 69 1/15/10 12:07 PM

www.msdnmagazine.com
http(s)://hkshoppinglist.blob.core.windows.net/
http(s)://hkshoppinglist.queue.core.windows.net/
http(s)://hkshoppinglist.table.core.windows.net/

B E YO N D MV P

Extending the MVP
Pattern for Enterprise-
Class Application UI
Architecture

Model-View-Presenter (MVP) represents a breakthrough
in thinking about UI patterns, and makes it clear that UI design-
ers should maintain separation of concern in their applications.

However, there are many diff erent interpretations of the MVP
pattern. For example, some people take for granted that the MVP
pattern explicitly represents the UI architecture pattern. Th is is not
exactly true for enterprise-class applications. Compared to other
types of UI applications, enterprise-class applications need to deal
with many diff erent requirements, more parties involved, more
complexity, and many cross-dependencies on other systems such
as services, other applications and so on. Th ese particular charac-
teristics have required the UI architecture of enterprise-class ap-
plications to have more emphasis on fl exibility, maintainability,
reusability, implementation consistency, and decoupling business

Zhe Ma

functionality from the underlying technology to avoid dependen-
cies on specifi c products and vendors.

If only the MVP pattern itself is applied as the UI architecture
pattern for enterprise-class applications, some questions will be
raised. Here are just a few:

A typical enterprise-class application contains many views, and
events occurring in one view could impact other views. For exam-
ple, clicking a button in one screen could cause a pop-up window
to show up, and another screen’s data may be updated at the same
time. Who is responsible for controlling such screen-fl ow logic?
Should this be controlled by each view’s pairing presenter?

In a Service-Oriented Architecture (SOA), the application UI
generally gets information through services. For example, the UI
would need to call a generated WCF service client proxy in order
to call the WCF service to get data. Is it a good design for presenter
to call this service client proxy directly? If these services are imple-
mented with diff erent technologies or if service models are changed,
how do you design the UI architecture so that the impact of these
changes on the UI implementation can be minimized?

Following this train of thought, some implementations might
use generated service client proxy models across the application.
Are there any risks of doing that? If a dedicated UI model is needed,
which part will be responsible for providing the mapping between
the service client proxy model and the UI model?

Th ese are not new questions, and many other patterns have been
introduced to fi ll in the gap. For example, the Application Con-

msdn magazine70

This article discusses:
• Patterns in UI architecture

• Extending the MVP pattern

• UI pattern elements

• A UI call sequence

Technologies discussed:
Design Patterns, ASP.NET, Windows Communication Foundation

Code download available at:
code.msdn.microsoft.com/mag201002MVP

ZheMa.BeyondMVP.0210.Lay6_70-74.indd 70 1/15/10 10:36 AM

http://code.msdn.microsoft.com/mag201002MVP

71February 2010msdnmagazine.com

troller pattern (msdn.microsoft.com/library/cc304764) was introduced to
assume the responsibility for controlling navigation fl ow.

I thought it would be helpful to pull some of these disparate
MVP-extending discussions together and draw a holistic view of
UI architecture design. Looking at the problem from an enterprise-
class application perspective, this will help UI architects recognize
what key parts are needed for UI design and defi ne a consistent
pattern to guide UI application implementation.

Th e term “MVP pattern” will be used throughout the article, but
actually the original MVP pattern has been retired and two varia-
tions of the original MVP are currently in place. One is the Passive
View pattern and the other is the Supervising Controller pattern.
Although either one fi ts certain scenarios and both have pros and
cons, the UI architecture described in Figure 1 is primarily based
on and extended from the Passive View pattern. Th is certainly
doesn’t mean UI architecture couldn’t be constituted based on the
Supervising Controller pattern, but this is my personal preference.

Let’s begin the discussion with a clear understanding of what
constitutes the UI architecture by extending the MVP pattern.
Figure 1 shows what key parts are needed from a high-level
view of UI architecture. In this diagram, seven major parts are
introduced: View, Presenter, UI Model, Process Flow Controller,
Service Agent, Service Client Proxy Model, and Service Client Proxy.

View
View basically follows the View role in the Passive View pattern.
View assumes a simple list of responsibilities, starting with han-
dling UI display layout and presentation-specifi c logic.

View’s second responsibility is to raise events to the Presenter,
and it requires several implementations to handle this responsibil-
ity. First, View needs to implement the IView interface. To ensure
there are few if any implementation impacts on Presenter logic,

and to provide unit testing capability, the Presenter should inter-
act with View through an IView interface.

Second, View needs to defi ne public properties that Presenter
can interact with. In the Passive View pattern, View does not pass
data to Presenter. Instead, it is up to Presenter to choose data it is
interested in from View. Th is type of implementation further re-
duces the contract binding between View and Presenter and sepa-
rates their responsibilities more clearly.

One question, though, is about what data type the View proper-
ties should use. Th e ideal way is to have View defi ne these properties
using only simple types, such as string, integer and so on. However,
in a real-world implementation, it can become tedious if the View
defi nes data this way. It is acceptable to expose a data property by
referencing complex types, such as UI Model defi nitions. Th is bal-
ances architectural purity with implementation considerations.

Th ird, View also needs to call Presenter operations when events
happen in the View. Th e View can call the Presenter directly with-
out passing any data. Th ere is no loosely coupled design between
View and Presenter because View and Presenter are always paired.
It is good design to have one Presenter operation dedicated to one
View event.

View’s last responsibility is to respond to property value updates.
Presenter updates View properties to indicate a change. View has
the knowledge to decide how to respond to such changes. It could

There are many
different interpretations of the

MVP pattern.

IView

IPresenter

«instantiate»

Through Inversion of Control (IoC)
«delegate»

Publish event

View Presenter

Process Flow
Controller

UI Model

ServiceAgent

ServiceClientProxyModel

ServiceClientProxy

Figure 1 UI Architecture Based on the Passive View Pattern

cmp MVP Pattern

ZheMa.BeyondMVP.0210.Lay6_70-74.indd 71 1/15/10 10:36 AM

www.msdnmagazine.com
http://msdn.microsoft.com/library/cc304764

msdn magazine72 Beyond MVP

go ahead to refresh the view to refl ect the data change, or it could
decide not to take any action.

Presenter
Presenter essentially follows the Presenter role in the Passive View
pattern. However, here, the Presenter does not determine process
fl ow. Th e Presenter takes event requests from the View and pub-
lishes event requests to Controller to let Controller decide the next
step. Because Presenter will not handle process fl ow logic, it can’t
know whether the event requests from View will have any impact
on other Views. So when Presenter receives event requests from
View, it will immediately publish corresponding events so that
Controller can respond to these event requests and decide on the
next process step. Presenter never assumes it can go ahead and
perform some actions until it is instructed by Controller.

Controller decides whether Presenter operations need to take
place. When a Presenter operation is called by Controller, Pre-
senter then performs the actions, such as to retrieve data through
a Service Agent. If Presenter needs to take actions against ser-
vices, it does that through Service Agent. It will pass required
parameters to the Service Agent and get results back from the
Service Agent.

When Presenter is ready to notify View about data changes, it
will do so by updating View’s property values. Th en it is up to View
to decide how to display them. As mentioned previously, Presenter
interacts with View through the IView interface rather than access-
ing the View object directly. Since the View instance has already
been passed to Presenter when initiating Presenter, Presenter al-
ready has a View instance to deal with.

Finally, Presenter can access the UI Model and can put it in a
cache if UI Model data needs to be accessed later.

Process Flow Controller
Th e Process Flow Controller is close to the Application Controller
pattern. Th e diff erence is that the sole responsibility of the Process

In a SOA, the application
UI generally gets information

through services.

Figure 2 UI Call Sequence

MainView_Load(EventArgs, object)

MainPresenter(MainView)

new Controller(Main Presenter)

HandleRetrieveRegionsEvent()

new ServiceAgent()

RetrieveRegions()

List<Region>()

OnRetrieveRegionCandidates()

Class::MainView Class::MainPresenter Class::Controller Class::ServiceAgent

Display RegionCandidates()

RetrieveRegions(object, RetrieveRegionEventArgs) :EventHandler

Set MainView.RegionCandidates property()

OnRetrieveRegions(object, RetrieveRegionEventArgs)

User

sd MVP Pattern

ZheMa.BeyondMVP.0210.Lay6_70-74.indd 72 1/15/10 10:36 AM

73February 2010msdnmagazine.com

Flow Controller discussed here is to control process fl ow based
on typed events raised by Presenter. Process fl ow is not limited
to screen navigation fl ow. It also includes controlling the order of
Presenter actions related to event requests.

Process Flow Controller subscribes to events published by
Presenter, and responds only to events published by Presenter.
Th ese events are typed events. In other words, Process Flow
 Controller doesn’t respond to a general event.

Because Process Flow Controller only responds to a typed event, a
process fl ow actually has already been predetermined when an event
occurs. Th is simplifi es Process Flow Controller’s logic. Each event
published by Presenter contains the data needed for Process Flow
Controller to carry on when initiating other Presenter operations.

Process Flow Controller will initiate Presenter and related View
instances if they haven’t been initiated yet. Inversion of Control
(IoC) will be needed due to cross-reference concerns. Th is also
provides a loosely coupled design between Presenter and Process
Flow Controller.

UI Model
UI Model basically follows the Model role in the Passive View pat-
tern. In Passive View, Model is really not doing much work and it
simply provides the model structure defi nition. In addition, as de-
scribed in the Presenter section, Presenter is responsible for main-
taining Model state.

Th e reason I call this UI Model rather than simply Model is to
diff erentiate it from Service Client Proxy Model, which will be de-
scribed later the article.

UI Model defi nes the model structure that is suitable for UI
application logic handling. Th e UI model defi nition may look
exactly the same as Service Client Proxy Model. However, in some
situations—especially if the UI needs to display data from multiple
service sources—a restructured UI Model is needed that will be
diff erent from the Service Client Proxy Model.

Service Agent
Service Agent plays an intermediary role between Presenter and
Service Client Proxy. Th e service in the name is not necessarily a
Web service. It represents any resources that will provide data or
perform business logic. Th is could be a Web service, but could also
be simply fi le I/O.

Service Client Proxy has specifi c meaning in Web service tech-
nology. Here, I use Service Client Proxy to represent the gateway
for a service.

Th e Service Client Proxy implementation is technically specifi c.
From Presenter’s perspective, it would rather not know how data is
transmitted or provided. Such technically specifi c details could be
hidden inside of Service Agent. So the layer of Service Agent protects
Presenter from being aff ected by service implementation technol-
ogy changes, service versioning, service model changes, and so on.

Service Agent provides operations for Presenter to interact with.
If a complex type needs to be passed to these operations, you need
to defi ne a complex type under UI Model. Th is is also true for the
operation return type. You then pass these operation calls to cor-
responding Service Client Proxy operations. In some cases, one

Service Agent operation may initiate several Service Client Proxy
operation calls.

Because Service Agent operations take in complex types
defi ned under UI Model, Service Agent operations need to map
from UI Model to Service Client Proxy Model when calling Service
Client Proxy operations. When Service Agent operations need
to return results back to Presenter, they would map from Service
Client Proxy Model to UI Model aft er getting results from Service
Client Proxy operations.

Th is could be a tedious job. However, there are tools available to
map from one model structure to another model structure easily,
so this become more of a one-time design job.

Service Client Proxy and Service Client Proxy Model
Service Client Proxy in Web service technology provides local
access for the service client even though the service is hosted re-
motely. In this article, I would describe Service Client Proxy as the
gateway to the service. Service Client Proxy Model represents the
service contract model defi nition.

Service Client Proxy passes calls to services and returns service
responses. If the service is implemented with ASP.NET Web Services
(ASMX) or Windows Communication Foundation (WCF) tech-
nologies, the Service Client Proxy can be generated automatically.

Service Client Proxy Model will refl ect the service contract
model structure defi nition.

Implementation Example
To illustrate the UI architecture described in Figure 1, let’s take
a look at a Windows Forms application that demonstrates the
implementation. This sample app is included in the download
for this article.

Th is sample application fi rst needs to load a list of regions. When
a region is selected, customers that belong to the region are dis-
played. When a customer is selected, a time range query window
will pop up. Aft er a start time and end time are entered, a list of
orders that belong to the selected customer will be displayed on
the data grid in the main screen.

I will use the scenario of displaying a list of regions to explain
how the UI architecture in Figure 1 is implemented in the sample
app. Figure 2 shows the call sequence for this scenario.

When the Main Screen form is loaded, it fi rst initiates the
Presenter interface and passes the current View instance to
Presenter’s constructor:

private void MainView_Load(
 object sender, EventArgs e) {

 _presenter = new MainPresenter(this);
 ...
}

Th e MainPresenter instance initiation will cause Main Presenter’s
constructor to fi rst assign the passed-in MainView instance

Process Flow Controller
subscribes to events published

by Presenter.

ZheMa.BeyondMVP.0210.Lay6_70-74.indd 73 1/15/10 10:36 AM

www.msdnmagazine.com

msdn magazine74 Beyond MVP

to a private variable of type IMainView. It then initiates a
Controller instance and passes the current Presenter instance to
the Controller constructor:

public MainPresenter(IMainView view) {
 _view = view;
 _controller = new Controller(this);
}

Controller instance initiation will cause the constructor to as-
sign the passed-in MainPresenter instance to a private variable of
type IMainPresenter. Th is constructor also defi nes the event han-
dler to be prepared to respond to MainPresenter’s published events,
such as RetrieveRegions:

public Controller(IMainPresenter presenter) {
 _mainPresenter = presenter;
 ...
 _mainPresenter.RetrieveRegions += (OnRetrieveRegions);
}

Back in the main screen form load event, Presenter is called to
retrieve regions aft er the Presenter object is initiated:

Private void MainView_Load(object sender, EventArgs e) {
 ...
 _presenter.OnRetrieveRegionCandidates();
}

When Presenter receives this call, it fi rst publishes the event
RetrieveRegions instead of going ahead to retrieve the regions. Th e
RetrieveRegions event has been defi ned in the IMainPresenter
interface and is implemented in MainPresenter:

public event EventHandler<RetrieveRegionsEventArgs>
 RetrieveRegions;
 ...

public void OnRetrieveRegionCandidates() {
 if (RetrieveRegions != null) {
 RetrieveRegions(this,
 new RetrieveRegionsEventArgs());
 }
}

In the Controller class, since an event handler for RetrieveEvents
has been registered, it can respond to the RetrieveRegions event:

private void OnRetrieveRegions(
 object sender, RetrieveRegionsEventArgs e) {

 _mainPresenter.HandleRetrieveRegionsEvent();
}

Controller decides that the process fl ow should return control
to MainPresenter and asks it to continue to retrieve regions. If
Controller needs to initiate presenters other than Main Presenter,
it can employ Unity Framework to perform that task.

In MainPresenter’s HandleRetrieveRegionsEvent operation, it
calls Service Agent to retrieve regions. For simplicity, my example
doesn’t actually implement the service. It just writes some dummy
data to make the application function. Aft er a result is returned
from Service Agent, note that MainPresenter doesn’t pass data to

MainView. Instead, it updates the MainView’s RegionCandidates
property:

public void HandleRetrieveRegionsEvent() {
 RegionAdminServiceAgent agent =
 new RegionAdminServiceAgent();
 List<Region> regionCandidates = agent.RetriveRegions();
 _view.RegionCandidates = regionCandidates;
}

In MainView’s RegionCandidates property, it handles the
display of regions:

public List<UIModel.Region> RegionCandidates {
 set {
 _regionCandidates = value;
 PopulateRegionCandidates();
 }
}

Th is is the whole sequence of retrieving regions and displaying
them in the MainView. It defi nitely involves more steps than sim-
ply calling Service Agent to get regions. However, when thinking
from the perspective of an enterprise-class application, it not only
introduces a loosely coupled design, it also promotes a consistent
implementation pattern. Th is can greatly simplify maintenance
and knowledge-transfer for a development team.

Just one more comment about this code example: the whole
sequence starts with the fi rst Windows Forms load event. A more
advanced implementation could start with Controller and let
Controller decide what the fi rst form is to be loaded.

Wrapping Up
In this article, I introduced one approach to UI architecture design
based on extending the MVP pattern. UI applications can be com-
plicated and there are many diff erent fl avors of UI application de-
sign. Th e technique I present in this article represents one of these
many solutions. Th is is a useful technique in many situations, but
be sure it suits your requirements before implementing it.

Th ere are already many UI frameworks on the market and many
are based on MVP, Model-View-Controller or patterns developed
as extensions of these two. A good fi rst step is to see what major
parts are implemented by these frameworks—for example, like
the way I abstracted the UI architecture in this article. Falling into
implementation details without fi rst considering the big picture
is not good architectural thinking. Starting with a broad architec-
tural understanding of the problem at hand ensures not only that
the foundational problems of system architecture are resolved, but
also that a repeatable and well-thought-out design can be followed.

Finally, in the example of this article, the Controller implementa-
tion was created with C#. A better approach might be to use a process
fl ow technology such as Windows Workfl ow Foundation, which may
allow a more fl exible design and implementation. However, this tech-
nical implementation detail will not aff ect the underlying principles
behind the UI architecture described in this article.

For further discussion of the MVP pattern, see the August 2006
issue of MSDN Magazine (msdn.microsoft.com/magazine/cc188690).

ZHE MA is a technical architect of Enterprise Architecture at Unum Group, based
in Portland, Maine. He can be reached at zma@unum.com.

THANKS to the following technical expert for reviewing this article:
Don Smith

If Controller needs to initiate
presenters other than

MainPresenter, it can employ
Unity Framework.

ZheMa.BeyondMVP.0210.Lay6_70-74.indd 74 1/15/10 10:36 AM

mailto:zma@unum.com
http://msdn.microsoft.com/magazine/cc188690

Project3 11/10/09 2:27 PM Page 1

http://www.leadtools.com/msdn

actually share custom controls between client applications and
Web applications. I’m sure this trend will continue into mobile
applications and eventually encompass many diff erent types of
information and entertainment systems, while taking advantage
of new technologies such as multi-touch.

For these reasons I am convinced that the user interface has become
an even more crucial part of application programming. Th is column
will explore the potential of user-interface design in WPF and
Silverlight, including the use of cross-platform code when possible.

Sounding Off
It’s not always possible to diff erentiate between good and bad
user-interface choices right away. Clippy—the anthropomorphized
paperclip that debuted in Microsoft Offi ce 97—probably seemed
like a good idea at the time. For that reason, I’ll focus more on the
technological potential rather than design. I’ll tend to avoid the
term “best practices.” Th at’s a matter for history and the market.

For example, a good case could be made that computers should
not make noise except when they’re playing a video or a sound
fi le in response to a specifi c command from the user. I’m going to
ignore that stricture and show you how to play custom sounds in a
WPF application by generating waveform data at runtime.

Th is sound-making capability isn’t an offi cial part of the .NET
Framework yet, but it’s made possible by the NAudio library

Sound Generation in WPF Applications

A few weeks ago I sat in a new Toyota Prius while the agent at
the rental car company explained the unfamiliar controls and
indicators arrayed on the dashboard. “Wow,” I thought. “Even for
a technology as old as the automobile, manufacturers are continu-
ally refi ning the user interface.”

In the broadest sense, the user interface is the place where
human and machine interact. While the concept is as old as
technology itself, the user interface really blossomed as an art form
only with the personal computer revolution.

Just a tiny fraction of today’s personal computer users can
remember the days before the advent of the graphical user inter-
faces of the Apple Macintosh and Microsoft Windows. At the time
(the mid- to late 1980s), some pundits feared that standardization
of the user interface would impose an oppressive uniformity over
applications. Th at was not the case. Instead, as the availability of
standard controls freed designers and programmers from the need
to reinvent the scrollbar, user interfaces actually began to evolve
and become much more interesting.

In this respect, the new paradigms introduced by Windows
Presentation Foundation (WPF) have allowed user interfaces to
get even fancier. WPF lays down a strong foundation of retained-
mode graphics, animation and 3-D. It adds to that a tree-based
hierarchical structure of parent and child elements and a powerful
markup language known as XAML. Th e result is unprecedented
fl exibility in customizing existing controls through templating,
and building new controls by assembling existing components.

But these new concepts aren’t just for client programming. A
healthy subset of the Microsoft .NET Framework, XAML and
WPF classes have become available in Web-based programming
through Silverlight. Th e day has already arrived when you can

UI FRONTIERS CHARLES PETZOLD

msdn magazine76

class SineWaveOscillator : WaveProvider16 {
 double phaseAngle;

 public SineWaveOscillator(int sampleRate):
 base(sampleRate, 1) {
 }

 public double Frequency { set; get; }
 public short Amplitude { set; get; }

 public override int Read(short[] buffer, int offset,
 int sampleCount) {

 for (int index = 0; index < sampleCount; index++) {
 buffer[offset + index] =
 (short)(Amplitude * Math.Sin(phaseAngle));
 phaseAngle +=
 2 * Math.PI * Frequency / WaveFormat.SampleRate;

 if (phaseAngle > 2 * Math.PI)
 phaseAngle -= 2 * Math.PI;
 }
 return sampleCount;
 }
}

Figure 1 A Class to Generate Sine Wave Samples for NAudio

I am convinced that the user
interface has become an even
more crucial part of application

programming.

Code download available at code.msdn.microsoft.com/mag201002WPF.

Petzold.ExtremeUI.0210.Lay5_76-78.indd 76 1/15/10 10:52 AM

http://code.msdn.microsoft.com/mag201002WPF

77February 2010msdnmagazine.com

available on Codeplex (naudio.codeplex.com). Following links from
that site, you can check out Mark Heath’s blog for some sample
code, and Sebastian Gray’s site tutorials.

You can use the NAudio library in Windows Forms or WPF
applications. Because it accesses Win32 API functions through
PInvoke, it can’t be used with Silverlight.

For this article, I used NAudio version 1.3.8. When you
create a project that uses NAudio, you’ll want to compile for 32-bit

processing. Go to the Build tab of the Properties page and select
x86 from the Platform Target dropdown.

Although the library provides many features for specialized
applications that need to use sound, I’m going to show you a tech-
nique that might fi nd its way into a more general-purpose application.

Suppose, for example, your application allows the user to drag
objects around the window, and you want this dragging to be ac-
companied by a simple sound (a sine wave, say) that increases in
frequency the further the object gets from the center of the window.

Th is is a job for waveform audio.
Almost all PCs these days include sound-generation hardware,

oft en implemented with a chip or two right on the motherboard.
Th is hardware is usually not much more than a pair of digital-to-
analog converters (DACs). Deliver a constant stream of integers
describing a waveform to the two DACs, and stereo sound comes out.

How much data is involved? Applications these days commonly
generate “CD quality” sound. Th e sampling rate is a constant 44,100
samples per second. (Th e Nyquist Th eorem states that the sampling
rate needs to be at least twice the highest frequency to be repro-
duced. Humans are commonly said to hear sounds with frequencies
between 20Hz and 20,000Hz, so 44,100 is comfortably adequate.)
Each sample is a signed 16-bit integer, a size that implies a signal-
to-noise ratio of 96 decibels.

Making Waves
Th e Win32 API provides access to the sound-generation hard-
ware through a collection of functions beginning with the words
waveOut. Th e NAudio library encapsulates those functions in a
WaveOut class that takes care of the Win32 interoperability and
hides much of the messiness as well.

WaveOut requires a class that you provide that implements the
IWaveProvider interface, which means the class defi nes a gettable
property of type WaveFormat that (at the very least) indicates the
sample rate and the number of channels. Th e class also defi nes a
method named Read. Th e arguments to the Read method include
a byte-array buff er that the class is required to fi ll with waveform

data. With default settings, this Read method will be called 10 times
a second. Fall behind a little in getting this buff er fi lled and you’ll
hear unaesthetic gaps in the sound and ugly static.

NAudio provides a couple of abstract classes that imple-
ment IWaveProvider and make things a little easier for common
audio jobs. Th e WaveProvider16 class implements an abstract Read
method that lets you fi ll the buff er with shorts rather than bytes,
so you don’t have to break the samples in half.

Figure 1 shows a simple SineWaveOscillator class that derives
from WaveProvider16. Th e constructor allows specifying a sam-
pling rate, but calls the base class constructor with a second argu-
ment indicating one channel for monaural sound.

SineWaveOscillator defi nes two properties named Frequency
(of type double) and Amplitude (a short). Th e program main-
tains a fi eld named phaseAngle that always ranges between 0 and
2π. For each sample, the phaseAngle is passed to the Math.Sin
function, and then increased by a value called the phase angle
increment, which is a simple calculation involving the frequency
and the sampling rate.

(If you’re going to be generating many waveforms simultaneously,
you’ll want to optimize processing speed by using integer arithmetic
whenever possible, even to the extent of implementing a sine wave
table as an array of shorts. But for simple uses of waveform audio,
fl oating point calculations are fi ne.)

To use SineWaveOscillator in a program, you’ll need a reference
to the NAudio.dll library and a using directive:

using NAudio.Wave;

Here’s some code that starts playing a sound.
WaveOut waveOut = new WaveOut();
SineWaveOscillator osc = new SineWaveOscillator(44100);
osc.Frequency = 440;
osc.Amplitude = 8192;
waveOut.Init(osc);
waveOut.Play();

Here the Frequency property is initialized to 440Hz. In
musical circles, that’s the A above middle C, and is oft en used as a
pitch standard and for tuning purposes. Of course, as the sound
is playing, the Frequency property can be changed. To turn off the
sound, the Amplitude could be set to 0, but the SineWave Oscillator
will continue receiving calls to the Play method. To stop those
calls, call Stop on the WaveOut object. When you don’t need the
WaveOut object any more, you should call Dispose on it to
properly release resources.

Off Key
When I used SineWaveOscillator in my sample program, it didn’t
do what I wanted. I wanted a sound to accompany objects dragged
around the window, and I wanted the frequency of that sound to be

Deliver a constant stream of
integers describing a waveform

to the two DACs, and stereo
sound comes out.

For simple uses of waveform
audio, fl oating point
calculations are fi ne.

Petzold.ExtremeUI.0210.Lay5_76-78.indd 77 1/15/10 10:52 AM

www.msdnmagazine.com
http://naudio.codeplex.com

msdn magazine78 UI Frontiers

based on the distance of the object from the center. But as I moved
my objects, the frequency transitions weren’t smooth. I was get-
ting a bumpy glissando (such as fi ngers are swept across the keys
of a piano or the strings of a harp), whereas what I wanted was a
smooth portamento (like a trombone or the opening clarinet of
Gershwin’s “Rhapsody in Blue”).

Th e problem is that each call to the Play method from Wave Out
causes an entire buff er to be fi lled based on the same frequency
value. During the time that the Play method is fi lling the buff er, the
frequency can’t change in response to the user dragging the mouse
because Play is executing on the user-interface thread.

So how bad is this problem, and how large are these buff ers?
Th e WaveOut class in NAudio includes a DesiredLatency property

that, by default, is set to 300 milliseconds. It also includes a Number-
OfBuffers property set to 3. (Multiple buffers help throughput
because the API can be reading a buff er while an application is fi ll-
ing another.) Hence, each buff er is equivalent to .1 second of samples.

Th rough experimentation, I discovered that it is not possible
to decrease the DesiredLatency signifi cantly without causing
audible gaps. It is possible to increase the number of buff ers—be
sure to select a value so that the buff er size in bytes is a multiple
of 4—but this didn’t seem to help signifi cantly. It’s also possible to
have the Play method run on a secondary thread by passing the
static method call WaveCallbackInfo.FunctionCallback to the
WaveOut constructor, but that didn’t help much either.

It soon became obvious that what I needed was an oscillator that
itself performed the portamento while filling the buffer. Instead of
SineWaveOscillator, I needed a PortamentoSineWaveOscillator.

PortamentoSineWaveOscillator
I wanted to make other changes as well. Human perception of
frequency is logarithmic. Th e octave is defi ned as a doubling of
frequency, and octaves are audibly similar across the spectrum.
To the human nervous system, the diff erence between 100Hz and
200Hz is the same as the diff erence between 1000Hz and 2000Hz. In
music, each octave comprises 12 audibly equal steps called
semitones. Hence, the frequencies of these semitones increase
sequentially by a multiplicative factor equal to the twelft h root of two.

I wanted my portamento to be logarithmic as well, so in
Portamento SineWaveOscillator I defi ned a new property named
Pitch that calculates frequency like this:

Frequency = 440 * Math.Pow(2, (Pitch - 69) / 12)

Th is is a fairly standard formula that comes from conventions
used in the Musical Instrument Digital Interface (MIDI), which

I’ll discuss in a future column. If you number all the notes of the
piano from the bottom to the top where Middle C is assigned a
Pitch value of 60, then the A above Middle C is 69, and the formula
determines the frequency to be 440Hz. In MIDI these Pitch values
are integers, but in the PortamentoSineWaveOscillator class, Pitch
is a double, so gradations between notes are possible.

In PortamentoSineWaveOscillator, the Play method detects
when Pitch has changed and then gradually changes the value used
to calculate the frequency (and hence the phase angle increment)
based on the remaining size of the buff er. Th e logic allows Pitch to
change while the method is executing, but that will only happen if
Play is executing on a secondary thread.

As the AudibleDragging program in the code download demon-
strates, it worked! Th e program creates seven little blocks of diff erent
colors near the center of the window. When you grab them with the
mouse, the program creates a WaveOut object using Portamento-
SineWaveOscillator. As the object is dragged, the program simply
determines a distance from the center of the window, and sets the
pitch of the oscillator based on the following formula:

60 + 12 * distance / 200;

In other words, Middle C plus one octave for every 200 units in
distance. AudibleDragging is a silly little program, of course, and it
may convince you more than ever that applications should forever
be silent. But the potential of generating custom sounds at runtime
is simply too powerful to be rejected categorically.

Play On
Of course, you’re not limited to single sine-wave oscillators. You
can also derive a mixer from WaveProvider16, and use that to
combine several oscillators. You can combine simple waveforms
into more complex ones. Th e use of a Pitch property suggests an
easy approach to specifying musical notes.

But if it’s music and musical instruments you want your
application to blast from the speakers, you’ll be pleased to know
that NAudio also includes classes that let you generate MIDI
messages from your Windows Forms or WPF applications. I’ll show
you how to do that soon.

CHARLES PETZOLD is a longtime contributing editor to MSDN Magazine.
His most recent book is “Th e Annotated Turing: A Guided Tour through Alan
Turing’s Historic Paper on Computability and the Turing Machine” (Wiley, 2008).
Petzold blogs on his Web site charlespetzold.com.

THANKS to the following technical expert for reviewing this article:
Mark Heath

You’re not limited to
single sine-wave oscillators.

The Frequency property is
initialized to 440Hz. In musical

circles, that’s the A above
middle C.

Human perception of frequency
is logarithmic.

Petzold.ExtremeUI.0210.Lay5_76-78.indd 78 1/15/10 10:52 AM

http://charlespetzold.com

(888) 850-9911
Sales Hotline - US & Canada:

/update/2010/02

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2010 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Add Outlook style interfaces to your WinForms applications.

BEST SELLER Janus WinForms Controls Suite from $757.44

ContourCube from $900.00
OLAP component for interactive reporting and data analysis.

BEST SELLER

BEST SELLER TX Text Control .NET and .NET Server from $499.59
Word processing components for Visual Studio .NET.

BEST SELLER

FusionCharts from $195.02
Interactive and animated charts for ASP and ASP.NET apps.

BEST SELLER

Untitled-36 1 1/4/10 3:33 PM

http://www.componentsource.com

msdn magazine80

First, consider how your organization has managed other major
soft ware industry changes in the past decade, such as moving from
procedural to object-oriented development, client-server to Web-
based soft ware, or waterfall to agile development methods. Th ese
changes weren’t made across the entire organization with the stroke
of a pen. Th ey were introduced incrementally and grew organically.
A similar approach, as outlined below, will work best for the SDL.

• Start small with one or two pilot projects.
• Even though you’ll introduce the new way of doing things with

a capable team, bring in outside help where needed.
• Study and learn from the results at the completion of a project.

Adapt the standard practices to fi t your particular organiza-
tion. Get rid of the things that didn’t work.

• Let coverage expand organically, nurturing internal experts
and spreading the culture change at a pace the organization
can manage without disrupting the business.

Second, recognize that being in compliance is just one goal for
your program—the fi rst step, not the fi nish line. More-secure and
higher-quality soft ware provides its own business and competitive
value. Measure your program by how successful you ultimately are
at delivering more trustworthy products and what that means for
your bottom line.

Adding Value with Secure Engineering
Oft en a team needs help optimizing its soft ware security program
because the project is in the early stages and the implementers
require guidance and encouragement. But sometimes even
established programs somehow fail to gain traction. Although
the organization may have recognized the value of security and
implemented a wide variety of activities and best practices—training,

SECURITY BRIEFS

Security Compliance
as an Engineering Discipline

As a result of new initiatives and requirements like the Payment Card
Industry Data Security Standard (PCI-DSS), many organizations are
building comprehensive application security programs for the fi rst
time. To do so, a number of those concerns are looking to the proven
success of the Microsoft Security Development Lifecycle (SDL). Th is
can be a very smart business move, but it’s important to understand
how the engineering focus of the SDL makes it diff erent from the
typical security-compliance eff ort. Th is month I’m going to address
some of the ways to harmonize compliance-focused programs with
security engineering to improve your soft ware development practices.

By integrating secure engineering practices into the entire soft ware
lifecycle, the SDL lets you achieve application security assurance
using a holistic approach. Th e process requires direct engagement
with soft ware developers and testers, and unlike the typical
compliance program, it’s incremental, iterative and should be
customized to every organization.

In this article, I’ll focus on some of the strategies and best practices
for deploying SDL and integrating it with security compliance regimes.

Compliance and the SDL
Building a soft ware security program from scratch can seem daunting.
Few organizations have a program or team dedicated specifi cally
to secure application development. Th e portfolio of the typical
security group includes networks and fi rewalls, policy and identity
management, systems confi guration, and general operations
and monitoring. Securing the ever-growing set of custom-built,
mission-critical applications is a new and challenging addition to
these responsibilities.

While a mature soft ware security practice will facilitate compli-
ance eff orts like PCI and the Common Criteria for Information
Technology Security Evaluation, looking at the SDL as just another
compliance eff ort will keep you from getting the best results from
your program. Unlike compliance programs, which have externally
defi ned goals and activities, the SDL recognizes that the business
goals and abilities of attackers are constantly changing. Many
organizations achieve compliance through large up-front eff orts
followed by minimal maintenance. In contrast, the SDL starts
incrementally and focuses on using constant eff ort for continuous
improvement. In addition, compliance oft en encourages separation
of duties between implementation and enforcement. Th e SDL is
built on close coordination with developers and testers. Given these
diff erences, if your experience is only in managing compliance
eff orts, how should you approach an SDL implementation?

BRAD HILL

Send your questions and comments for Brad to briefs@microsoft.com.

The SDL recognizes
that the business goals and

abilities of attackers are
constantly changing.

mailto:briefs@microsoft.com

81February 2010msdnmagazine.com

design review, static analysis, dynamic scanning, code review and
manual penetration testing—the results end up refl ecting poorly
on the large investment made.

Th e compliance-oriented approaches of traditional IT security
frequently bring with them biases that prevent these programs
from being truly successful in changing soft ware quality. By
reorienting programs to avoid some common compliance pitfalls
and by including the development organization, thus integrating
engineering approaches into compliance eff orts, organizations can
oft en identify simple changes that help their security eff ort reach
its full potential.

In the following sections I’ll highlight four of the most common
pitfalls and explain how to avoid or address them.

Don’t Do Everything—Do a Few Things Well
Compliance eff orts and their results tend to be well-defi ned.
Individual requirements are compartmentalized and have standard
measures, and overall compliance status is a matter of having enough
of the right boxes checked. From the abstract goal of becoming
compliant, the correct management strategy is to use the available
resources to cover as many areas as possible, and to spend as little as
necessary to become compliant with any individual requirement.

Quality soft ware engineering is much less amenable to this sort
of measurement, except at the very fi nest granularity. Spreading
resources too thin is a common pitfall. What’s worth doing is worth
doing well. A cursory or unskilled penetration test may give a false
sense of security—overconfi dence in the capabilities of a code-
scanning tool may lead to under-allocating resources to manual
code review, and limited training in areas such as cryptography may
give developers just enough knowledge to be dangerous. It’s better
to do a few things really well than everything poorly.

Consider one example from the code review process used in
security eff ort my company consulted on. A security code review
by a dedicated team was a mandatory part of the development
process for all Internet-facing applications—a rarely seen practice
and capability that’s usually indicative of a very strong program.

Code review by humans can be highly eff ective at fi nding
diffi cult-to-spot and important classes of security fl aws, but what
did this organization’s process look like? Because it was mandatory,
the reviewers had a great deal of work to do and little time to
complete it. Almost no time was allocated for the development
team to collaborate in the process, so the code reviewers were
working with little business context. Additionally, they had no
access to previous bug reports from tools or manual testing, nor
did they have access to a live instance of the system against which
to prove their fi ndings.

What were the results? Findings from code review were delivered to
the development team mere days before scheduled go-live dates, and
false-positive rates were as high as 50 percent. It was rare that these
bugs could even be triaged, let alone fi xed, during the same release
cycle in which they were found. Furthermore, identifi cation of logic
fl aws—perhaps the most important benefi t of manual analysis—was
unattainable due to the lack of business context and collaboration.

A better approach—one unlikely to be heard of oft en in the world
of compliance—is do less, and do it less oft en. Instead of devoting

two days each to code review and black-box penetration testing
on 10 releases a quarter, eliminate code review as a distinct activity.
Instead, perform eight days of source-code-informed, white-box
penetration testing on fi ve releases per quarter. Th e reduced number
of targets and broader context would allow enough time to fi nd
more fl aws and to actually fi x them before release.

Target Projects, Not Policies
Generally, when a compliance program is undertaken, its require-
ments are mandated for the entire organization and activities oft en
are structured to have few dependencies. Th is usually means that
compliance eff orts proceed horizontally, with new policies made
eff ective for everyone in an organization simultaneously. While some
SDL activities are amenable to this approach, it makes much more
sense to pick a few teams or projects to target with a vertical rollout.

To understand this, consider an analogy to another methodology
change that many soft ware organizations have undertaken recently:
the use of agile development methods. No company approaches
getting all its teams on agile methods by eliminating formal
specifi cations for all its projects in Q1, increasing iteration speeds in
Q3, and starting to write unit tests in Q2 of the following year. Th e
practices of agile development enhance and support each other and
should be rolled out together, one team and one project at a time.

Approach the SDL similarly: Don’t exhaust your initial hard-won
resources by implementing a universal mandate for threat modeling
without follow-up that uses the threat models, measures their
success, and iteratively improves. No SDL activity reaches its
potential in isolation from the others, and there’s no surer path
to a security initiative’s failure than a stack of expensive security
documentation with no actionable next steps.

Th is isn’t to say you should do everything at once. Pick a few
activities to start with, such as threat modeling, code review, and
automated scanning and roll them out together for a limited set of
projects. Th is approach allows you to gather data on how accurate
and useful your code scanner was in reducing vulnerabilities. It
also lets you see what kinds of bugs the scanner missed, but that
manual testing was able to fi nd or that threat modeling was able
to prevent. Th is is important information that helps you fi ne-tune
each process, understand the assurance levels you’re achieving, and
guide the eff ective allocation of future resources.

Always Measure Effectiveness
Too oft en when it comes to compliance, the thinking is, to para-
phrase Tennyson, “Ours is not to reason why. Ours is but to do and
die.” If a requirement is on the list, you won’t be compliant without
it. With such an iron-clad mandate, all incentive to measure
the benefi t of the activity is lost. So, for example, while most
organizations have password rotation policies, few quantify how
much security benefi t such guidelines provide. Not many concerns
attempt a cost-benefi t analysis to see if changing passwords on
15- or 45-day cycles would be better than 30, because there’s no
reason to question the standard.

Avoid making this mistake when quality is your real goal.
Typical training regimens provide a great example of this error.
Often the only two measurements we see for evaluating

www.msdnmagazine.com

msdn magazine82 Security Briefs

instructional programs are: did everyone get security training
and did the training mention the major vulnerability
classes? If your business goal is more-secure soft ware, though, have
those two hard-earned (and probably expensive) checked boxes
actually improved your soft ware quality?

Measuring eff ectiveness comes back to the core idea of relating
soft ware security directly to business goals. Before you start any
activity, understand what you’re trying to achieve and fi nd a way
to measure whether it works. Are developers and testers retaining
what they learn? Can they apply it to the real problems they have
to solve? Are teams that have been trained producing soft ware with
fewer bugs or eliminating bugs earlier in the lifecycle than teams
that haven’t been trained?

Metrics don’t have to be expensive to collect—a simple survey
might be enough to tune a training course—but they have to be
there. Developers are savvy enough to tell apart meaningful activities
tuned to produce results and hoops to be jumped through. Th e
diff erence between successful and unsuccessful security programs
is oft en one of mistaking the hoops for the results.

Setting principled goals, measuring the program’s progress against
those goals, and improving the process at each step will help motivate
developers and change the internal culture of quality. Showing prog-
ress against meaningful metrics also provides a good justifi cation
for the eff ort and will support the procurement of additional
resources required for the maintenance and growth of the program.

Just Because Everyone Else Is Doing It ...
Just as there are no silver bullets for the general soft ware-development
process, there can be none for developing secure soft ware. Be wary of
anyone telling you they have the one universal solution for all your
security problems. Start small, adopt practices that are appropriate to
your organization, and learn from the experiences of others with
similar security needs and resources.

But how do you know where to start? Th e list of things to do
seems huge.

A recent survey of the world’s best soft ware security programs
observed that, essentially, all of them performed the same set of
nine activities. At last: best practices! Shouldn’t you set as your
target the procedures the top 10 programs in the world agree on?

If you look at the world’s top 10 navies, you’ll fi nd that they all
deploy aircraft carriers and submarines, and their admirals would
be quick to tell you that these technologies are the most eff ective
way to project force at sea. Of course, as you keep looking, you’ll
fi nd that nobody but the top 10 navies has submarines and aircraft
carriers. Such fl eets require vast expenditures, support structures

and technical capabilities that are only within the reach of a major
power. Many smaller countries would fi nd little use for equivalent
resources and might very well be bankrupted trying to acquire and
maintain such systems.

Similarly, a small soft ware-development organization may well
bankrupt itself following practices and trying to manage tools whose
purpose is scaling secure engineering to thousands of developers
managing many millions of lines of code.

Th e big-ticket, silver-bullet solutions for security compliance
tend to be better at killing budgets and credibility than bugs —
unless an organization is well-prepared for the introduction of
such products. Th e most successful organizations aren’t those that
check all the big boxes, but those that start small and that grow
sustainable and manageable security programs closely related to
the goals of the business.

Before you buy that expensive soft ware package, build your
expertise with the growing arsenal of free and built-in security
tools available on the major enterprise soft ware platforms. Get
comfortable triaging and fi xing all the bugs FxCop and C++ /
analyze (or FindBugs if your organization uses Java) can turn up,
and get your code to compile cleanly against the SDL banned API
list before you spend a penny doing anything more complex.

Once you’re used to managing and running cleanly with these
tools, you’re much more likely to succeed with something more
comprehensive. You may fi nd that the free tools are just what you
need, or they may leave you eager for bigger and better. You haven’t
lost anything by starting with free.

Harmonizing Quality and Compliance
While it may be starting to sound like the SDL is antithetical to
compliance, that’s defi nitely not the case. Th e two target the same
basic needs, and harmonizing and integrating them can produce
signifi cant cost savings. When extending a compliance program to
improve quality through the SDL, you can avoid common pitfalls
and maximize your success with the four strategies discussed.

Don’t try to do everything at once. Start with what you can do
well. Increment your eff orts project by project, not policy by policy.
Always measure the eff ectiveness of your eff orts for your own
business bottom line. Grow into your program, don’t buy into it.

Most importantly, get started now! Th ere’s no minimum incre-
ment for quality. Start by taking advantage of the free tools and
guidance at the Microsoft SDL Web site (msdn.microsoft.com/security/

cc448177). Download and try out the SDL Optimization Model to
evaluate the current state of your organization’s capabilities, and
use the professional services and training available through the
Microsoft SDL Pro Network (msdn.microsoft.com/security/dd219581) to
start improving quality and delivering more secure soft ware while
you meet your audit and compliance goals.

BRAD HILL is the Director of SDL Services at iSEC Partners, a full-service
security consulting fi rm that provides penetration testing, secure systems
development, security education and soft ware design verifi cation. Visit
isecpartners.com for more information.

THANKS to the following technical expert for reviewing this article:
Michael Howard

While most organizations have
password rotation policies, few

quantify how much security
benefi t such guidelines provide.

msdn.microsoft.com/security/cc448177
msdn.microsoft.com/security/cc448177
http://msdn.microsoft.com/security/dd219581
http://isecpartners.com

Untitled-1 1 1/11/10 10:55 AM

http://www.alexcorp.com

hosted in many diff erent types of applications. I
decided to host the WCF MathService service in
a WinForm application, but the techniques I pres-
ent in this article work with any type of WCF host.

Aft er creating an empty WinForm, I added two
Button controls and one ListBox control. Th en,
just below the Form defi nition, I added the simple
code required to declare a WCF service:
 [ServiceContract]
 public interface IMathService {
 [OperationContract]
 double Sum(double x, double y);
 }

Th e ServiceContract attribute applied to an
interface generates all the code needed for a WCF
inteface. If you’re moving to WCF from Web
services, you can think of an OperationContract
attribute as being analogous to the WebMethod
attribute. Implementing the WCF service is simple:

public class MathService : IMathService {
 public double Sum(double x, double y) {
 double answer = x + y;
 return answer;
 }
}

With my WCF plumbing in place, I added a reference to
System.ServiceModel.dll, the .NET assembly that houses WCF function-
ality, to my project. Th en I added using statements to the two key .NET
namespaces contained within the assembly needed for my WCF service:

using System.ServiceModel;
using System.ServiceModel.Description;

Th e ServiceModel namespace holds the ServiceHost class and
several classes that defi ne WCF bindings. Th e Description namespace
holds the ServiceMetadataBehavior class I use to publish informa-
tion about my WCF service. Next I added service instantiation logic
to the Button1 control event handler:

try {
 string address =
 "http://localhost:8000/MyWCFMathService/Service";
 Uri baseAddress = new Uri(address);
 serviceHost =
 new ServiceHost(typeof(MathService), baseAddress);
 serviceHost.AddServiceEndpoint(typeof(IMathService),
 new WSHttpBinding(SecurityMode.None), "MathService");
 . . .

Th e key factor to note here is that I create a WCF endpoint using
WSHttpBinding. WCF bindings are a collection that includes infor-
mation about secutity and reliabilty settings, transport protocol and
encoding type. Th e WSHttpBinding is an excellent general purpose

WCF Service Testing with Sockets

In this month’s column I am joined by Carlos
Figueira, a senior soft ware development engineer
in Test on the Windows Communication Founda-
tion (WCF) team. With his help I intend to show
you how to test WCF services using a network
socket-based approach.

A good way for you to see where I’m headed is to
examine the screenshots in Figures 1, 2 and 3. Figure
1 shows a WinForm application that hosts a simple-
but-representative WCF service named MathService.
Behind the scenes, MathService contains a single
operation named Sum that accepts two values of
type double, then computes and returns their sum.

Figure 2 shows a typical WCF ASP.NET Web
application client that accepts two values from the
user, sends those two values to the MathService
service, fetches the response from the service, and
displays the result in a ListBox control.

Figure 3 shows a console application test harness that performs
functional verifi cation of the MathService service. Th e test harness
sends SOAP messages directly to MathService using a network socket,
accepts the response from the service, and compares an expected
result with the actual result to determine a pass or fail. In test case #001,
the test harness sends 3.4 and 5.7 to the WCF service under test and
receives the expected value 9.1. Test case #002 is a deliberate, spurious
failure just for demonstration purposes.

In the sections that follow, I fi rst briefl y describe the WCF service
under test shown in Figure 1 so you’ll understand which factors
are relevant when constructing WCF socket-based test automation.
Next I briefl y explain the demonstration Web client to give you
some insight into when socket-based testing is more appropriate
than alternative techniques. Th en I explain in detail the code that
created the test harness so that you will be able to adapt the tech-
nique I present here to meet your own needs. Th is article assumes
you have intermediate-level C# coding skills.

The WCF Service Under Test
I used Visual Studio 2008 to create the WCF service under test.
One of the neat features about WCF services is that they can be

TEST RUN DR. JAMES MCCAFFREY

Send your questions for Dr. McCaffrey to testrun@microsoft.com.

Code download available at code.msdn.microsoft.com/mag201002WCF.

msdn magazine84

WCF bindings
include

information about
secutity and

reliabilty settings,
transport protocol,

and encoding
type.

McCaffrey.TestRun.Lay8_84-87.indd 84 1/15/10 11:05 AM

mailto:testrun@microsoft.com
http://code.msdn.microsoft.com/mag201002WCF

85February 2010msdnmagazine.com

binding for non-duplex communication. By default, WSHttpBinding
uses encrypted transmission, but here I specify SecurityMode.None
so that you can more easily see request-response data.

Next I add code to make my service visible to clients through the
Add Service Reference mechanism:

ServiceMetadataBehavior smb =
 new ServiceMetadataBehavior();
smb.HttpGetEnabled = true;
serviceHost.Description.Behaviors.Add(smb);
. . .

Now I’m ready to add code that starts up the WCF service:
serviceHost.Open();
int count = 0;
while (serviceHost.State !=
 CommunicationState.Opened &&
 count < 50) {
 System.Threading.Thread.Sleep(100);
 ++count;
}
. . .

I use a simple but eff ective way to detect a service hang at startup
by going into a delay loop of 0.1 seconds per delay, up to a maximum
of 50 delays. Aft er the delay loop terminates, either the WCF service
has started or the maximum number of delays has been reached:

if (serviceHost.State == CommunicationState.Opened)
 listBox1.Items.Add("WCF MathService is started");
else
 throw new Exception(
 "Unable to start WCF MathService in a timely manner");

I’m taking many shortcuts you wouldn't take when writing
production code, such as not checking to see if the serviceHost
object is already open before attempting to open it. Th e logic in the
Button2 control event handler closes the WCF MathService, and
I use that same pattern to start the service:

int count = 0;
serviceHost.Close();
while (serviceHost.State !=
 CommunicationState.Closed &&
 count < 50) {
 System.Threading.Thread.Sleep(100);
 ++count;
}

A Typical Web Application Client
I used Visual Studio 2008 to create the WCF Web application
client shown in Figure 2. I started by clicking File | New | Web

Site. In the new Web site dialog box, I targeted the Microsoft
.NET Framework 3.5, selected the Empty Web Site template, chose
a File System location using the C# language, and named my
project WCFMathServiceWebClient.

Next, in Solution Explorer, I right-clicked on my project and
selected the Add New Item option from the context menu. In the
resulting dialog box, I selected the Web Form item. I deselected
the “Place code in separate fi le” option so I could place all my
application code in a single fi le.

Aft er adding the Web Form, I added server-side control tags to
create the very simple UI of the Web application:

<asp:Label ID="Label1" runat="server"
 Text="Enter first number: "/>
<asp:TextBox ID="TextBox1" runat="server" /><p />
<asp:Label ID="Label2" runat="server"
 Text="Enter second number: "/>
<asp:TextBox ID="TextBox2" runat="server" /><p />
<asp:Button ID="Button1" runat="server" Text="Compute Sum"
 onclick="Button1_Click" /><p />
<asp:ListBox ID="ListBox1" runat="server" />

Figure 1 WCF MathService Service Under Test

Figure 3 WCF Test Harness Run

Figure 2 Typical WCF ASP.NET Client

McCaffrey.TestRun.Lay8_84-87.indd 85 1/15/10 11:05 AM

www.msdnmagazine.com

msdn magazine86 Test Run

Next, I hit the F5 key to instruct Visual Studio to build the
application and prompt me to allow the automatic generation of a
Web.confi g fi le for my project. Aft er I OK’d the creation of the
Web.confi g fi le, I started the WCF MathService service so my
client project would be able to see the service.

I right-clicked on the client project in Solution Explorer
and selected the Add Service Reference option from the con-
text menu. In the Add Service Reference dialog box, I entered
the location of my WCF service (http://localhost:8000/
MyWCFMathService/ Service) and clicked the Go button. Because
my WCF service is running and the service publishes metadata
about itself, the Visual Studio tool will find the service. I renamed
the service namespace from the default ServiceReference1 to
WCFMathServiceReference.

Behind the scenes, Visual Studio adds information about the WCF
service to the Web.confi g fi le by creating a <system.serviceModel>
entry. Th at entry contains an <endpoint> element with attribute
binding="wsHttpBinding" so that the Web application client knows
how to communicate with the WCF service. In design view, I double-
clicked on the Button1 control to register its event handler and
added logic to access the service:

try {
 WCFMathServiceReference.MathServiceClient sc =
 new WCFMathServiceReference.MathServiceClient();
 double x = double.Parse(TextBox1.Text);
 double y = double.Parse(TextBox2.Text);
 double sum = sc.Sum(x, y);
 . . .
 ListBox1.Items.Add(
 "The response from the WCF service is " + sum);

Th e name of the class that holds the Sum operation is Math-
ServiceClient—in other words, the name of the class (Math Service)
derived from the WCF contract interface (IMathService), with
“Client” appended.

The Test Harness
I also used Visual Studio 2008 to create a C# console application
project named WCFTestHarness. At the very top of the Visual
Studio-generated Program.cs file I added these using statements:

using System;
using System.Text;
using System.Net;
using System.Net.Sockets;

I need classes in the System.Text namespace to convert text to
byte arrays because TCP works at the byte level. I need classes in
the System.Net namespace to create objects that are abstractions
of IP addresses. And I need the System.Net.Sockets namespace to
create a socket object that performs the actual send and receive

operations. I added a brief logging message to the Main method
and then set up my test case data as an array of strings:

namespace WCFTestHarness {
 class Program {
 static void Main(string[] args) {
 try {
 Console.WriteLine(
 "\nBegin WCF MathService testing via sockets run");

 string[] testCases = new string[] {
 "001,3.4,5.7,9.1",
 "002,0.0,0.1,1.0",
 "003,6.7,6.7,13.4"
 };
 . . .

Each test case data string contains four comma-delimited fi elds:
a test case ID, two inputs to the Sum operation, and an expected
response value. I use my test case data to create the main test har-
ness processing loop:

foreach (string testCase in testCases) {
 Console.WriteLine("\n============\n");
 string[] tokens = testCase.Split(',');
 string caseID = tokens[0];
 string input1 = tokens[1];
 string input2 = tokens[2];
 string expected = tokens[3];
 . . .

I use the Split method to break each string into its four fi elds.
Next comes one of the key parts of sending input to a WCF

service using sockets. I create a SOAP message as shown in Figure 4.
Notice that my test case input values, input1 and input2, are embed-

ded into the SOAP message inside a <Sum> element near the end of the
message. But how did I determine this not-so-simple message structure?

Th ere are several ways you can determine the required SOAP
message structure and data for a WCF service. Th e easiest approach,
and the one I used, is to use a network traffi c examination tool
such as netmon or Fiddler to capture data while you exercise a
client application. In other words, with my WCF service running,
and a traffi c capture tool also running (I used Fiddler), I launched
the Web application client program shown in Figure 2 and used
the client to send a request to the WCF service. Th e network
traffi c capture tool showed me the SOAP message that was sent
from the client to the WCF service. I used that information to craft
the SOAP message in my test harness.

With my SOAP message constructed, next I displayed my test
case input as expected data to the shell:

Console.WriteLine(
 "Test Case : " + caseID);
Console.WriteLine(
 "Input : <s:Envelope..." + "<x>" +
 input1 + "</x>" + "<y>" + input2 +
 "</y>...</s:Envelope>");
Console.WriteLine("Expected : " + expected);

Th en I set up the IP address of the target
WCF MathService service under test:
 string host = "localhost";
 IPHostEntry iphe = Dns.Resolve(host);
 IPAddress[] addList = iphe.AddressList;
 EndPoint ep = new IPEndPoint(addList[0], 8000);

Th e Dns.Resolve method returns a list of
IP addresses (there may be more than one)
associated with a particular host machine
name as an IPHostEntry object. Th e IPHost-
Entry object has an AddressList property that
is an array of IPAddress objects. An EndPoint

string soapMessage = "<s:Envelope xmlns:s='http://www.w3.org/2003/05/soap-envelope'";
soapMessage += " xmlns:a='http://www.w3.org/2005/08/addressing'><s:Header>";
soapMessage += "<a:Action s:mustUnderstand='1'>http://tempuri.org/IMathService/Sum</a:Action>";
soapMessage += "<a:MessageID>urn:uuid:510b1790-0b89-4c85-8015-d1043ffeea14</a:MessageID>";
soapMessage += "<a:ReplyTo><a:Address>http://www.w3.org/2005/08/addressing/anonymous</a:Address>";
soapMessage += "</a:ReplyTo><a:To s:mustUnderstand='1'>";
soapMessage += "http://localhost:8000/MyWCFMathService/Service/MathService</a:To></s:Header>";
soapMessage += "<s:Body><Sum xmlns='http://tempuri.org/'>";

soapMessage += "<x>" + input1 + "</x>" + "<y>" + input2 + "</y>";

soapMessage += "</Sum></s:Body></s:Envelope>";

Figure 4 SOAP Message for testing the WCF service

McCaffrey.TestRun.Lay8_84-87.indd 86 1/15/10 11:05 AM

87February 2010msdnmagazine.com

object consistes of an IPAddress object plus a port number. Now
I can create my socket:

Socket socket = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);
socket.Connect(ep);
if (socket.Connected)
 Console.WriteLine(
 "Connected to socket at " + ep.ToString());
else
 Console.WriteLine(
 "Error: Unable to connect to " + ep.ToString());

Socket objects implement the Berkeley sockets interface, which is
an abstraction mechanism for sending and receiving network traffi c.
Th e fi rst argument to the Socket constructor specifi es the addressing
scheme. Here I use InterNetwork, which is ordinary IPv4.

Th e second argument to the Socket constructor specifi es which
of six possible socket types you want to create. Stream indicates a
TCP socket. Th e other common type is Dgram, which is used for
UDP (User Datagram Protocol) sockets.

Th e third argument to the Socket constructor specifi es which
protocols are supported by the socket. Th e Socket.Connect method
accepts an EndPoint object.

Next I construct my header information:
string header =
 "POST /MyWCFMathService/Service/MathService HTTP/1.1\r\n";
header += "Content-Type: application/soap+xml; charset=utf-8\r\n";
header += "SOAPAction: 'http://tempuri.org/IMathService/Sum'\r\n";
header += "Host: localhost:8000\r\n";
header += "Content-Length: " + soapMessage.Length + "\r\n";
header += "Expect: 100-continue\r\n";
//header += "Connection: Keep-Alive\r\n\r\n";
header += "Connection: Close\r\n\r\n";

Just as with the SOAP message, I determined the header informa-
tion by using a network traffi c monitoring tool. Notice that each line
ends with a \r\n (carriage return, linefeed) terminator rather than a
single \n (newline) token, and the last line ends with a double \r\n.
As I've indicated by the commented line of code above, depending
on a number of factors you may need to send either a Keep-Alive
or a Close argument to the Connection header entry. Similarly, the
SOAPAction header is not necessary for a WSHttpBinding.

Now I can combine header and SOAP message, convert the
entire message to bytes, and send the request:

string sendAsString = header + soapMessage;
byte[] sendAsBytes = Encoding.UTF8.GetBytes(sendAsString);
Console.WriteLine("Sending input to WCF service");
int numBytesSent = socket.Send(sendAsBytes, sendAsBytes.Length,
 SocketFlags.None);

Th e Socket.Send method has several overloads. Here I send the entire
request without any special send or receive options. I do not make use of
the return value, but I could have used that value to check that my entire
message was sent. Now I can fetch the response from the WCF service:

byte[] receivedBufferAsBytes = new byte[512];
string receiveAsString = "";
string entireReceive = "";
int numBytesReceived = 0;

while ((numBytesReceived =
 socket.Receive(receivedBufferAsBytes, 512,
 SocketFlags.None)) > 0) {
 receiveAsString =
 Encoding.UTF8.GetString(receivedBufferAsBytes, 0,
 numBytesReceived);
 entireReceive += receiveAsString;
}

Because in most cases you cannot predict the number of bytes
that will be in the response, the idea is to create a buffer and

read chunks of the response until the entire response has been
consumed. Here I use a buffer of size 512. As each group of 512
bytes are received, they are converted into text and appended to
an aggregate result string.

With the response received, I check the response to see if it
contains the current test case expected value:

Console.WriteLine("Response received");
if (entireReceive.IndexOf(expected) >= 0)
 Console.WriteLine("Test result : Pass");
else
 Console.WriteLine("Test result : **FAIL**");

The approach I use here is effective for very simple test scenarios,
but you may have to add additional logic if your testing scenario
is more complicated. I finish my harness by tying up loose ends:

 . . .
 } // main loop
 Console.WriteLine(
 "\n=======================================");
 Console.WriteLine("\nEnd test run");
 } // try
 catch (Exception ex)
 {
 Console.WriteLine("Fatal: " + ex.Message);
 }
 } // Main()
 } // Program
} // ns

Wrapping Up
Th ere are many alternatives to WCF testing, but the socket-based
approach to testing WCF services is extremely fl exible. Because TCP
and sockets are low-level constructions, they work in a variety of
scenarios, in particular when you are testing in a technologically
heterogeneous environment. For example, you could test a WCF
service hosted on a Windows platform from a non-Windows cli-
ent. Although you would have to modify the specifi c C# code I’ve
presented here to a language supported by the client (typically C++
or Perl), the overall technique would be the same.

Additionally, a socket-based approach is quite useful for se-
curity testing (you must assume any WCF service will be sub-
ject to non-friendly socket probes) and performance testing (a
socket approach is direct and can provide baseline round-trip
timing data).

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc., where he
manages technical training for software engineers working at the Microsoft
Redmond, Wash., campus. He has worked on several Microsoft products
including Internet Explorer and Search. Dr. McCaffrey is the author of
“.NET Test Automation Recipes” (Apress, 2006) and can be reached at
jammc@microsoft.com.

THANKS to the following technical expert for reviewing this article:

Carlos Figueira

There are several ways you can
determine the required SOAP message
structure and data for a WCF service.

McCaffrey.TestRun.Lay8_84-87.indd 87 1/15/10 11:05 AM

mailto:jammc@microsoft.com
www.msdnmagazine.com

feature would be until they had tried it; thus, it repre-
sents a necessary step in the evolution of soft ware. And
nobody died from it, (leastways not that I know of).
But it’s time we took what we learned from treating
users wrong, and use that knowledge to treat them right.

 We can see this evolution in Word’s auto-correct
feature, an absolute gem. I think much faster than
I type. (I don’t think all that fast, I just type really
slowly, for a geek.) In my haste to get my words
into Word before they fl ee my brain, my one hand
sometimes moves faster than the other and I type “hte”
when I really mean “the.”

Word does not scream an alarm to demand
that I stop and fi x my error, nor does it pop a
box into my face saying “Didn’t you really mean
‘the’?” It doesn’t even underline it with a red squig-
gle for me to come back to later. Instead, Word
automatically fi xes my typo, magically converting
my “hte” into the “the” that I really meant. Word

says with its actions, “No problemo Plattski, you sleep-deprived,
hyper-caff einated human being; I know what you meant. I’ll take
care of this silliness for you, you just keep ranting.” And it does
the same with every misspelling and other typo in its large and
increasing memory.

Th is feature uses the computer to do what computers do best, so
that the human user can do what humans do best. It understands;
it respects; it even enhances the humanity of the user. Th is is what
computer soft ware really can be and should be.

Th ink about it: two features in the same program. One demands
that humans become more like computers, the other helps them
be even more human. Which would you rather use? (OK, I know,
you’re a geek, that’s why you’re reading this magazine, but which
would your paying customers rather use?) Humans are not going to
stop being human any time soon, no matter how much you might
wish they would evolve into something more logical. Good appli-
cations recognize this, and adjust to their human users, instead of
hoping, futilely, for the opposite.

The Human Touch

Th e screenshot below shows the movable, dockable
main menu bar, a so-called “feature” that appeared
in Microsoft Offi ce Word 97 and departed with the
menu in Offi ce Word 2007. Have you ever moved
the main menu because you wanted to? Have you
ever seen, or even heard of, anyone doing that? You
haven’t, and neither have I. We’ve only dislodged it
by accident, reaching for the File menu and over-
shooting by a pixel or two, usually in the morning
when we’ve had too much coff ee. We had to break
our train of thought, re-dock the bar, then spend 30
seconds cursing the programmers who wrote that
behavior. It might not sound like much, but fi gure
30 seconds, twice a day, times a billion users, and
Word wastes 27 human lifespans every single day
on this foolishness. Don’t get me started ...

Th is feature is bad because it requires the user to
become more precise in his mouse clicking, and pun-
ishes him if he doesn’t. It disrespects and denies the
fundamental humanity of the user. Computers are diligent; they are
thorough; they are precise. Humans are none of these. Th at’s why we
invented computers: to be these things that we are not. Th is feature
demands that users become less human and more like a computer. It’s
impolite, counterproductive, and philosophically wrong. It’s not a feature:
Because our goal is to make users happy so they pay us money, it’s a bug.

One might reasonably argue that, given the adolescent age of the
PC soft ware industry at the time, nobody knew how wrong this

DON’T GET ME STARTED DAVID S. PLATT

msdn magazine88

It understands;
it respects; it

even enhances
the humanity of
the user. This is
what computer
software really

can be and
should be.

DAVID S. PLATT teaches Programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Software Sucks” and “Introducing Microsoft .NET.”
Microsoft named him a Software Legend in 2002. He wonders whether he
should tape down two of his daughter’s fi ngers so she learns how to count in octal.
You can contact him at rollthunder.com.The Moveable Menu Bar: Bad Idea

Platt.DGMS.0210.Lay6_88.indd 88 1/15/10 12:17 PM

www.rollthunder.com.

Untitled-4 1 1/11/10 2:36 PM

http://www.FarPointSpread.com
http://www.DataDynamics.com
http://www.GrapeCity.com

From the industry leader in data visualization
technology comes an easy-to-integrate,
customizable, turnkey dashboard solution.

From the industry leader in data visualization
technology comes an easy-to-integrate,
customizable, turnkey dashboard solution.

• Rapid dashboard development

• Flexible integration and customization

• The latest Silverlight 3.0 technology

Silverlight is a trademark of Microsoft Corporation in the United States and/or other countries.

Project1 11/12/09 10:14 AM Page 1

http://www.dundas.com/dashboard

	Back
	Print
	MSDN Magazine, February 2010
	Contents
	Cutting Edge
	Going Places
	CLR Inside Out
	Managed Extensibility Framework
	Robotics
	Dynamic .NET
	Cloud Computing
	Beyond MVP
	UI Frontiers
	Security Briefs
	Test Run
	Don’t Get Me Started

