
56 Visit TechNet Magazine online at: technet.microsoft.com/en-gb/magazine

SharePoint security
accounts
Pav Cherny

Inside SharePoint

When using SharePoint security accounts,
there is a high risk of creating weak system
configurations that can expose an entire
SharePoint environment. To help you
deploy and secure SharePoint server farms
correctly, Microsoft has published extensive
information and detailed guidelines.
The Office SharePoint Server Security
guide (available at go.microsoft.com/
fwlink/?LinkId=84739), for example,
comprises more than 300 pages about
planning and implementing site and
content hierarchies, authentication
methods, security roles, administrator
and service accounts, and many other se-
curity issues. TheWindows SharePoint
Services Security Account Require-
ments worksheet (see go.microsoft.com/
fwlink?LinkId=92930&clcid=0x409) also
provides essential information regard-
ing security account configurations.
If security is important to you, you
definitely want to make sure to follow
this worksheet.

Even with extensive documenta-
tion, configuring security accounts
can be a difficult task. In fact, the de-
fault settings of single-server instal-
lations deviate from the worksheet’s
recommendations, and certain compo-
nents, such as the E-mail Integration
Web Service included in Windows
SharePoint Services (WSS) 3.0, require
elevated permissions on the server,
which not only strays from the Mi-
crosoft security recommendations but

is in direct conflict with security best
practices and plain common sense. The
SharePoint 3.0 Central Administration
tool happily applies critical security
account configurations without warn-
ings, the Microsoft Baseline Security
Analyzer (MBSA) does not detect the
resulting weaknesses, and so it remains
a challenge to secure a SharePoint serv-
er farm—and to keep it secure.

In this column, I put SharePoint se-
curity accounts under a microscope
to show you how a weak configura-
tion can give an attacker full control
over all site collections and sites. This

is a somewhat sensitive topic. On the
one hand, I want to help you recognise
the security challenges that surround
SharePoint server configurations. Af-
ter all, you must understand both the
strengths and the weaknesses of your
SharePoint environment if you want
to secure it effectively.

On the other hand, I don’t want to
aid malicious people. For this reason,
I am not providing any worksheets or
custom tools with this column and I’ll
constrain source code discussions to
basic topics that should be familiar to
every professional ASP.NET develop-
er. The source code snippets covered
in this column should help you detect
vulnerabilities, but not help anyone
exploit them. Even with limited pro-
gramming skills, you should be able
to use these snippets to create custom
ASP.NET pages if you have Microsoft
Office SharePoint Designer 2007.

A trial version of Microsoft Of-
fice SharePoint Designer 2007 is avail-
able at go.microsoft.com/fwlink/?LinkId=
130166. I invite you to configure a test
lab according to your own preferences,
secure it as best as you can, and then
run the code snippets for verification

	 SharePoint Products and Technologies Web Site
	 microsoft.com/sharepoint

	 Windows SharePoint Services TechCenter
	 technet.microsoft.com/windowsserver/sharepoint

	 Windows SharePoint Services Developer Center
	 msdn.microsoft.com/sharepoint

	 Microsoft SharePoint Products and Technologies Team Blog
	 blogs.msdn.com/sharepoint

SharePoint Resources

TechNet Magazine May 2009 57

purposes. Let’s see how secure your
SharePoint sites are!

Application pools and 	
security accounts
Security accounts are at the very core
of the SharePoint request-processing
model. They define the security con-
text of the IIS worker processes that
run the SharePoint Web applications.
When you create a SharePoint Web
application, you must specify, among
other things, an application pool with
associated security account credentials
and a SharePoint database with an as-
sociated authentication method. If
you use Windows authentication (rec-
ommended), SharePoint automatically
grants the specified security account
dbOwner permissions on the content
database so that the IIS worker process
running the SharePoint Web applica-

tion can gain access to the site collec-
tions and sites hosted in this database.
Otherwise, you must provide explicit
SQL Server credentials.

In any case, SharePoint site collec-
tions and sites are virtual constructs.
Physically, they correspond to database

records. If you know the account name
and password to establish a direct SQL
Server connection to the content da-
tabase, you can gain full access to all
its site collections and site data regard-
less of permissions and access controls
defined at the SharePoint level. Share-
Point cannot block you because you
are establishing a direct connection
to the database server, as illustrated in
Figure 1. The security account is there-
fore a prime target for an attack.

To mitigate security risks, Micro-
soft recommends that you configure
separate applications pools (and secu-
rity accounts) for site collections with
authenticated and anonymous con-
tent and to isolate applications that
store passwords or where users have
great liberty to create and administer
sites and to collaborate on content. By
following this configuration advice,
the underlying idea is that an attack-
er who gains control over one applica-
tion pool will not then implicitly have
universal access to all data hosted in
the SharePoint farm. SharePoint site
collections and sites in other databases
are still out of reach, provided you use
separate security accounts for their as-
sociated Web applications.

Microsoft first introduced the con-
cept of worker process isolation based
on applications pools with IIS 6.0 and
states that IIS has not suffered a sin-
gle critical security vulnerability ever
since. This is very reassuring, so be sure
to take advantage of application pools
in SharePoint farms. Keep in mind,
however, that IIS Web sites and Share-
Point Web applications are not synon-
ymous. While you can isolate IIS Web
sites, you cannot isolate SharePoint
Web applications from each other.

Genuine isolation exists only if
Web sites do not share resources, yet
SharePoint Web applications always
have resources in common, such as the
farm’s configuration database. As il-
lustrated in Figure 2, gaining control
over a SharePoint security account im-
plies the ability to access the Share-
Point configuration database. That Figure 1	 Bypassing SharePoint site collections and sites to access data

SharePoint Web Application

SQL Server Environment

Security account provides
IIS Worker Process (WSS)
with access to all data

Security account provides
unauthorized person
with access to all data

IIS and
WSS �.�

Active Directory Environment

Unauthorized
Person

SQL Server
Client

SQL
Server

http://topsite/subsite_a

http://topsite/subsite_b

http://topsite

http://topsite/sites/sitecol

http://topsite/sites/sitecol/subsite_a

http://topsite/sites/sitecol/subsite_b

SharePoint
Admins and Users

If you know the
account name and
password, you gain
full access to all site
collections and site
data, regardless of
permissions.

58 Visit TechNet Magazine online at: technet.microsoft.com/en-gb/magazine

access capability should make you feel
uncomfortable if you deployed your
SharePoint farm without giving prop-
er thought to the protection of your
security accounts, especially if you are
hosting site collections and sites from
different internal or external custom-
ers in a shared environment.

Running custom code on 	
SharePoint Servers
Out of the box, SharePoint doesn’t
disclose security account information;
it takes malicious code to discover the
details. As we all know, security vulner-
abilities can enable attackers to upload
malicious code, but sometimes intru-
sion is even easier.

In the simplest case, an attacker might
be able to log on to a SharePoint server
locally or via Terminal Server and copy
malicious code into the %COMMON-
PROGRAMFILES%\Microsoft Shared\
Web Server Extensions\12\TEMPLATE\

Layouts folder. Note that SharePoint
includes this folder as a virtualised
subfolder in every SharePoint site.

In another scenario, a SharePoint
administrator might unknowingly in-
troduce malicious code by deploying
a custom SharePoint solution from
a questionable source without prop-
er testing and code verification. Inline
ASP.NET code embedded in master and
content pages is also cause for concern.
By default, SharePoint does not pro-
cess server-side scripts, but anyone with
write-access to a SharePoint Web appli-
cation’s web.config file can change the
rules for processing server-side scripts.
You need only add a PageParserPath en-
try to the web.config file’s <PageParser-
Paths> section. How exactly does the
PageParserPath entry work?

Let’s suppose a developer who is
using SharePoint calls you and com-
plains about an error message he gets
while developing a custom ASP.NET

page that states “Code blocks are not
allowed in this file.” You search the In-
ternet and find the solution in a news-
group or blog site:

<PageParserPath VirtualPath="/*"
CompilationMode="Always"
 AllowServerSideScript="true"
IncludeSubFolders="true" />

Perhaps you ignore the security warn-
ings or perhaps the security implica-
tions aren’t even mentioned. No matter,
you add this line to your web.config
file and now everybody is happy be-
cause you solved the problem.

Unwittingly, however, you also just
opened an avenue to run any custom
code in ASP.NET pages with full trust.
If an attacker now uploads a malicious
ASP.NET page, the SharePoint envi-
ronment is in jeopardy. As indicated
in Figure 3, it is irrelevant where in
a site collection hierarchy an attacker
has the permission to upload a page
– it can be an innocent-looking small
team site. The attack always affects the
Web application and possibly the en-

Figure 2	 Relationship between SharePoint Web applications, configuration
database, and content databases

SQL Server

IIS

Content Database Content Database Content Database

SQL Server

Configuration Database

Worker Process
(W�WP.exe)

Application Pool

SharePoint
Web
Application

Worker Process
(W�WP.exe)

Application Pool

Worker Process
(W�WP.exe)

Application Pool

SharePoint
Web
Application

Security
Account

Security
Account

SharePoint
Web
Application

Security
Account

Figure 3	 Enabling inline ASP.NET
code can compromise a SharePoint
Web application

Content Database

Configuration Database

Worker Process
(W�WP.exe)

Application Pool

SharePoint Web
Application

Malicious
ASP.NET

Page

TechNet Magazine May 2009 59

pact of an exploit on one site that al-
lows an attacker to inject code onto
the server to attack other sites. Process
isolation can help to achieve this goal,
but it requires you to place the other
sites in separate Web applications that
run in application pools with different
security accounts.

You must adequately protect the ac-
count credentials, otherwise the con-
figuration effort is pointless. One easy
way to deliver these sensitive securi-
ty credentials straight into the wrong
hands is to grant application pool ac-
counts access to the IIS metabase,
which is required to run the Directo-
ry Management Service—a part of the
E-mail Integration Web service. If the
application pool account has metab-
ase access, an attacker can revert im-
personation and then retrieve all the
accounts and passwords in clear text,
as illustrated in Figure 5. The entire
server farm is lost because the attack-
er can now bypass process isolation by
running malicious code under any of
these security accounts and establish-
ing SQL Server connections to all con-
tent databases.

If you’re interested in a Directory
Management Service solution that
doesn’t require metabase access, you
should look up my September 2008
column, “SharePoint Directory Inte-
gration,” at technet.microsoft.com/
magazine/cc742803.

Security accounts in the
configuration database
If you follow the rule not to grant ap-
plication pool accounts administrative
permissions or even so much as read ac-
cess to the IIS metabase on your Share-
Point servers, the code in Figure 5 only
yields an Access is denied message. But
security account information is also
available in the configuration database
and Mr. Hyde has access to this data-
base, as explained earlier.

You can’t deny SharePoint security
accounts access to the configuration
database nor can you deny access to the
registry key that stores the correspond-

private string GetMrHyde()
{
 string retVal = string.Empty;
 retVal = "Dr Jekyll is: " + WindowsIdentity.GetCurrent().Name + "
";

 WindowsImpersonationContext impCtx = WindowsIdentity.Impersonate(IntPtr.Zero);

 retVal += "Mr Hyde is: " + WindowsIdentity.GetCurrent().Name + "
";

 impCtx.Undo();
 return retVal;
}

Figure 4	 SharePoint Web applications have two security contexts

tire server farm because both content
database and configuration database
are accessible.

About Dr. Jekyll and Mr. Hyde
So how does an attacker gain access to
content and configuration databases
without explicitly knowing the secu-
rity account credentials? It’s actual-
ly relatively straightforward. The IIS
worker process that runs the Share-
Point Web application impersonates
the SharePoint user and uses the re-
sulting thread token for access checks.
For example, Dr. Jekyll can access all
those SharePoint resources that his se-
curity token is permitted to access. But
the SharePoint Web application also
has the process token of the IIS work-
er process, which is the security token
of the SharePoint security account.

It is Mr. Hyde who shows up when
you revert impersonation by calling
the static WindowsIdentity.Imper-
sonate method, and passing in a zero
pointer, as illustrated in Figure 4. Dr.
Jekyll has no direct access to the data-

bases, but Mr. Hyde does. The road is
clear for SQL Server connections and
T-SQL queries.

Security accounts and process
isolation
Application pools and security ac-
counts cannot help you protect site
collections and sites placed in a Web
application configured to run unveri-
fied code. Their purpose is to mitigate,
by means of process isolation, the im-

One way to deliver
security credentials
into the wrong
hands is to grant
application pool
accounts access to
the IIS metabase.

60 Visit TechNet Magazine online at: technet.microsoft.com/en-gb/magazine

ing SQL Server connection string. The
connection string might not immedi-
ately work if you use SQL Server 2005
Express, but you can derive the correct
data source information from the cur-
rent SharePoint site collection (SPCon-
text.Current.Site.ContentDatabase.
DatabaseConnectionString) and the
name of the configuration database
corresponds to the name of the local
farm (SPFarm.Local.Name).

Unfortunately, these little hurdles
don’t stop an attack. Regardless of
whether you use SQL Server or SQL
Server Express, Mr. Hyde can retrieve
the information displayed in Figure 6.
Note that the password is encrypted,
however, so the attack has not yet fully
succeeded.

But even without decrypting pass-
words, application pools that use the
same security account are already
recognizable. For example, in Figure
6, the application pools SharePoint
Central Administration v3 and Share-
Point—80 use the Network Service ac-
count and if SharePoint—80 happens
to be the compromised Web applica-
tion, then SharePoint Central Admin-
istration v3 is compromised as well.
The corresponding security account
is the Central Administration account,
which has elevated permissions on the
SharePoint server.

It should not be used for standard
Web application pools, yet the Share-
Point Products and Technologies
Configuration Wizard applies this
configuration in a single-server instal-
lation by default. Therefore, it’s very
important that you review and, if nec-
essary, change the security account
configuration in your SharePoint en-
vironment. More information on this
topic is outlined in detail in the Mi-
crosoft Knowledge Base article “How
to Change Service Accounts and Ser-
vice Account Passwords in SharePoint
Server 2007 and in Windows Share-
Point Services 3.0” (see support.micro-
soft.com/kb/934838).

Security accounts and credential

keys
So what’s the big deal about the Cen-
tral Administration account? Most im-
portantly, unlike standard application
pool accounts, the Central Administra-
tion account has access to the registry
location that stores the credential key

to decrypt the security account pass-
words.

Figure 7 shows this parameter and
its default security settings. As you can
see, local Administrators, the WSS_
RESTRICTED_WPG group (which
contains the Central Administration

Figure 5	 Retrieving security account information from the IIS metabase

private string GetMetabaseAppPoolIDs()
{
 WindowsImpersonationContext impCtx = WindowsIdentity.Impersonate(IntPtr.Zero);
 string retVal = string.Empty;
 try
 {
 string metabasePath = "IIS://localhost/w3svc/AppPools";
 DirectoryEntry appPools = new DirectoryEntry(metabasePath);
 foreach (DirectoryEntry appPool in appPools.Children)
 {
 switch (int.Parse(appPool.Properties["AppPoolIdentityType"].Value.ToString()))
 {
 case 0: // Local System
 retVal += "
" + appPool.Name
 + " (Local System)";
 break;
 case 1: // Local Service
 retVal += "
" + appPool.Name
 + " (Local Service)";
 break;
 case 2: // Network Service
 retVal += "
" + appPool.Name
 + " (Network Service)";
 break;
 case 3: // Custom
 retVal += "
" + appPool.Name
 + " (" + appPool.Properties["WAMUserName"].Value
 + " [Pwd: " + appPool.Properties["WAMUserPass"].Value
 + "])";
 break;
 }
 }
 }
 catch (Exception ee)
 {
 retVal = "Metabase " + ee.Message;
 }

 impCtx.Undo();
}

TechNet Magazine May 2009 61

account), and the SYSTEM account
have access to this key and this implies
that your SharePoint Web applications
should not use accounts with local ad-
ministrator permissions, the Central
Administration account, or the SYS-
TEM account. SharePoint Web appli-
cations should not be able to access the
credential key.

Unfortunately, however, this is no
guarantee that a skilled attacker can-
not determine the CredentialKey or
security account passwords, such as
through SYSTEM token hijacking,
password cracking, or simply by plac-
ing malicious code in master pages or
content pages to export the creden-
tial key to an unprotected location and
then waiting for a user with local ad-
ministrator permissions to access the
site. As you can see, it’s important that
you don’t allow unverified code on
your servers.

SYSTEM token hijacking deserves
some more detailed explanation be-
cause you can prevent this form of
attack if you avoid using the built-in
system accounts, such as Network Ser-
vice, for your SharePoint Web applica-
tions. In fact, Cesar Cerrudo, founder
and CEO of Argeniss, discovered this
vulnerability, and he demonstrated
the exploit at the HITBSecConf2008
Deep Knowledge Security Conference
in Dubai, United Arab Emirates. Ce-
sar showed how an ASP.NET Web ap-
plication running under the Network
Service account can inject a DLL into
the Remote Procedure Call (RPC) ser-
vice and then hijack the security to-
ken of a thread in the RPC service that
runs at SYSTEM privilege level.

After this, an attacker then only
needs to pass the hijacked SYSTEM se-
curity token to the WindowsIdenti-
ty.Impersonate method to gain access
to the CredentialKey registry parame-
ter and other protected resources. Mi-
crosoft confirmed the vulnerability, so
you should avoid using the Network
Service account for your SharePoint
Web applications.

Figure 6	 Getting security account information from the configuration metabase

private string EnumAppPoolAccounts()
{
 string retVal = string.Empty;
 try
 {
 WindowsImpersonationContext impCtx = WindowsIdentity.Impersonate(IntPtr.Zero);

 string regConfigDB =
 @"SOFTWARE\Microsoft\Shared Tools\Web Server Extensions\12.0\Secure\ConfigDB";
 RegistryKey keyConfigDB = Registry.LocalMachine.OpenSubKey(regConfigDB);

 string ConfigDB = (string)keyConfigDB.GetValue("dsn");

 SqlConnection sqlConn = new SqlConnection(ConfigDB);
 sqlConn.Open();

 SqlCommand sqlCmd = new SqlCommand("SELECT Name, Properties FROM Objects"
 + " WHERE ClassId = 'B8369089-08AD-4978-B1CB-C597B5E90F64'", sqlConn);
 sqlCmd.CommandType = System.Data.CommandType.Text;
 SqlDataReader sqlReader = sqlCmd.ExecuteReader();

 while (sqlReader.Read())
 {
 retVal += "
" + sqlReader.GetString(0);
 string appPoolXML = sqlReader.GetString(1);
 if (!string.IsNullOrEmpty(appPoolXML))
 {

 XmlDocument xmlDoc = new XmlDocument();
 xmlDoc.LoadXml(appPoolXML);

 XmlElement root = xmlDoc.DocumentElement;
 XmlNode ndType = root.SelectSingleNode("/object/fld[@name=
 'm_IdentityType']");
 if (ndType != null && ndType.InnerText.ToLower() != "specificuser")
 {
 retVal += " (" + ndType.InnerText + ")";
 }
 else
 {
 retVal += " ("
 + root.SelectSingleNode("/object/sFld[@name='m_Username']").InnerText
 + " [Pwd: "
 + root.SelectSingleNode("/object/fld[@name='m_Password']").InnerText
 + "])";
 }
 }
 }
 sqlReader.Close();
 sqlConn.Close();
 impCtx.Undo();
 }
 catch (Exception ee)
 {
 retVal = ee.Message;
 }
 return retVal;
}

62 Visit TechNet Magazine online at: technet.microsoft.com/en-gb/magazine

Pav Cherny is an IT expert and
author specialising in Microsoft tech-
nologies for collaboration and unified
communication. His publications include
white papers, product manuals, and
books with a focus on IT operations and
system administration. Pav is President
of Biblioso Corporation, a company that
specialises in managed documentation
and localisation services.

Don’t break the law
The 10 Immutable Laws of Security
were published by the Microsoft Se-
curity Response Center a long time
ago (go to technet.microsoft.com/
library/cc722487), and they still apply
today. Jesper M. Johansson recently
wrote a three-part series called “Revisit-
ing the 10 Immutable Laws of Security,”
at technet.microsoft.com/magazine/
cc895640). You should keep these
laws in mind when designing your
SharePoint server farms, and you should
also follow the SharePoint security
guidelines and worksheets to apply reli-
able security account configurations.

In a nutshell: use strong passwords,
don’t grant security accounts elevat-
ed permissions on your SharePoint
servers, change passwords frequently
(including the farm credentials), and
keep in mind that there is no absolute
isolation between SharePoint Web ap-
plications that use common resources,
just as there is no absolute comput-
er security. Moreover, don’t change
the server code processing rules, keep
unverified assemblies away from your
servers, and follow the Windows

Figure 7	 Permission assignments to access the FarmAdmin registry key

SharePoint Services Security Account
Requirements worksheet in your securi-
ty account configuration, and you might
be able to consider your SharePoint
environment reasonably secure.

However, if strict separation of site
content is a requirement for your
organisation, I recommend that you
host the corresponding site collections
in separate server farms, possibly in
separate Active Directory forests and
SQL Server environments. 	 ■

For more information visit:
http://technet.microsoft.com/en-gb/office/
sharepointserver/default.aspx

