
Tools for managing ACLs
Jesper M Johansson

Security watch

In Windows, access control lists (ACLs)
give you extremely fine control over
the ability of users and processes to
use resources such as files and folders.
Managing ACLs can be one of the more
complicated tasks related to protecting the
security of your users’ systems. Fortunately,
there are a number of useful utilities
that help automate and simplify tasks
surrounding permissions and ACLs.

Most readers are familiar with the
venerable cacls.exe tool that has been
in every version of Windows NT since
it first came out. If you run cacls.exe in
Windows Vista, you are greeted with
this message:

Microsoft Windows [Version 6.0.5744]
Copyright (c) 2006 Microsoft Corporation. All
rights reserved.

C:\Windows\system32>cacls

 NOTE: Cacls is now deprecated, please use
Icacls.

In addition to updates to ACLs in
Windows Vista (see technetmagazine.
com/issues/2007/06), Microsoft has
also updated some of the tools that
you use to manage ACLs. Interestingly,
the most significant of these updates
are command-line tools.

Icacls.exe is new in Windows Vista
(and also down-level in Windows
Server 2003 Service Pack 2). It will
eventually replace cacls.exe, which,
as you may be aware, was never com-
pletely updated to support the more

granular permissions introduced with
Windows 2000, making this an update
that is about seven years overdue.

Surprisingly, in spite of being dep-
recated, cacls.exe does actually include
some new features. First, it is aware
of both junction points and symbol-
ic links, and knows to traverse those.
Second, it can both print and set an
ACL using a Security Description Defi
nition Language (SDDL) string.

However, in spite of the updates to
cacls.exe, you really want the function-
ality available in icacls.exe.

Saving and restoring ACLs
A constant wish – at least of mine – for
the past 10 years has been the ability
to save an ACL so that you can restore
it at a later date. This turns out to be
one of the most complicated opera-
tions you can perform on ACLs. Except
in certain special cases, it is unlikely to
get back to exactly where you would
have been had you not ruined the
ACLs in the first place. Nevertheless,
this functionality can be quite useful.

Before I go into how to save or re-
store ACLs, let me first explore why it
is so difficult. Let’s say you have a hier-
archy containing user data for students
at a local college. You save the ACL on
1 February. On 17 April you discover
that somehow the ACL has been cor-
rupted and you go to restore it from
the saved copy. What complications
could there be with this operation?

First, the new quarter started on
2 April. About 15 per cent of your
students graduated; consequently,
their directories no longer exist. Thus,
you have ACLs in the backup file that
are invalid. You also have a batch of
new students, another 15 per cent, that
started with the new quarter. They
have home directories now, but no
ACLs in the backup file. What should
their ACLs be? Then of course you
have the 70 per cent that are still there,
but they have created new files and
folders and deleted others. You can ig-
nore the deleted ones, but how do you
configure the new folders they creat-
ed? What if a student decided to share
a folder with his friends on 4 March?
Will you break that when you restore
the ACL?

Saving and restoring ACLs is not
nearly as simple an operation as many
people would have you believe. You
need to tread extremely lightly when
doing so. It is very possible, even likely,
that you will have some undefined be-
haviour as a result. Restoring ACLs is
definitely a last resort; the longer it has
been since you backed it up, the more
likely it is that something will break
when you restore it.

If you nevertheless wish to try this
functionality, run icacls.exe with the
/save switch:

TechNet Magazine September 2007 75

75_79_SecWatch.desfin.indd 75 8/8/07 16:33:53

icacls <target> /save acls.bin /t

This would save the ACLs to a file
called acls.bin. The file will contain
one line for each object with an ACL
followed by one line specifying the
ACL in SDDL. Using the /t switch the
command will operate on the object
you specified and all objects and con-
tainers underneath it.

The save functionality is a welcome
addition to the toolkit, but it has a
few flaws. For example, it only saves
the discretionary access control list
(DACL), not the system access control
list (SACL). In fact, if there is a SACL,
it saves a dummy value that indicates
this, but it does not actually save any
part of the SACL.

In addition, the way the ACL is saved
creates an interesting problem. Before
you open the saved ACL in your favou-
rite text editor, remember:

Do Not Edit Your Saved ACL!
If you were to open the file con-

taining your saved ACL in a text edi-

tor, you would find that it appears to
be a Unicode (UTF-16) formatted text
file. In fact, that is almost exactly what
it is. This might lead you to think you
could edit it and save it from a text edi-
tor. Don’t do it!

If you open the file that contains the
saved ACLs in a text editor and then
save it, you will not be able to restore
the ACLs from that file. It turns out
that it is not actually a Unicode text
file after all. Such a file must begin
with the 2 bytes 0xfffe. If you save the
file with a text editor, such as Notepad,
it will in fact put that flag into the file
in the first 2 bytes. The icacls.exe tool,
however, expects the ACL data to start
at byte 0 in the file. Consequently, the
tool will be unable to parse the ACLs
in the file as it expects the first two
bytes to be part of the string specifying
the object to operate on. Your backup
file will be unusable.

Microsoft is aware of this problem,
but as it was only reported very late in
the beta cycle for Windows Vista, this

flaw was not fixed prior to release. At
this point in time, we do not know
when, or even whether, it will be fixed.
So for now, the best advice is to not
edit your saved ACLs. If you need to
do so, save the file as a .bin file and use
a hex editor, such as your favourite de-
velopment environment.

Once you have saved an ACL using
the /save switch, you can restore it us-
ing icacls.exe with the /restore switch.
The restore command in its simplest
form uses this syntax:

icacls <directory> /restore acls.bin

The restore procedure does not op-
erate on files. To see this, look at the se-
quence of commands shown in Figure
1. Here I create a save file by point-
ing icacls.exe at a file. I then try to re-
store it by simply substituting /restore
for /save. This fails because the restore
command only operates on directories.
The files it is supposed to modify are
specified in the acls.bin file already. To
restore the ACL, I point it at the direc-
tory instead of the file. This is what I
do in the last command where I speci-
fy “.” as the object to operate on.

Note also that the restore command
must run elevated! You can run the save
command from a command prompt
running as a low admin or even a stan-
dard user, so long as you have the right
to read the ACL. However, to restore
the ACL you need to have a complete,
unadulterated administrative token.

Substituting SIDs
Another feature that’s very useful in
icacls.exe is the ability to replace the
permissions for one user with permis-
sions for a different user. This is done
during restore using the /substitute
switch. The documentation for the
substitute switch says it needs an SID,
but later it explains that this can actual-
ly also be a regular user name. Thus, the
sequence shown in Figure 2 works.

As you can see, I end up with the
same ACL I had before, but the ACE
that used to specify permissions for foo
now specifies them for bar instead.

C:\Users\Jesper>icacls test.txt /save acls.bin
processed file: test.txt
Successfully processed 1 files; Failed processing 0 files

C:\Users\Jesper>icacls test.txt /restore acls.bin
test.txt\test.txt: The system cannot find the path specified
Successfully processed 0 files; Failed processing 1 files

C:\Users\Jesper>icacls . /restore acls.bin
processed file: .\test.txt
Successfully processed 1 files; Failed processing 0 files

Figure 1 Saving and restoring ACLs

C:\Users\Jesper>icacls test.txt
test.txt VistaRC2-Test\foo:(R,W)
 VistaRC2-Test\Jesper:(I)(F)
 NT AUTHORITY\SYSTEM:(I)(F)
 BUILTIN\Administrators:(I)(F)

Successfully processed 1 files; Failed processing 0 files

C:\Users\Jesper>icacls test.txt /save acls.bin
processed file: test.txt
Successfully processed 1 files; Failed processing 0 files

C:\Users\Jesper>icacls. /substitute foo bar /restore acls.bin
processed file: .\test.txt
Successfully processed 1 files; Failed processing 0 files

C:\Users\Jesper>icacls test.txt
test.txt VistaRC2-Test\bar:(R,W)
 VistaRC2-Test\Jesper:(I)(F)
 NT AUTHORITY\SYSTEM:(I)(F)
 BUILTIN\Administrators:(I)(F)

Successfully processed 1 files; Failed processing 0 files

Figure 2 Substituting SIDs during restore

76 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

Security watch

75_79_SecWatch.desfin.indd 76 8/8/07 16:33:53

Change owner
The chown tool has been a staple on
UNIX systems for years. Windows orig-
inally had no built-in way to change
the owner of an object. Then came
the setowner tool in the Resource Kit.
Then we got the takeown.exe tool in
Windows NT 4.0, but this utility only
allowed you to take ownership, not
grant it to others unless you had their
password. Now icacls.exe gives you the
built-in ability to set the owner of ob-
jects which you have permission to set
the owner on:

C:\>icacls c:\test /setowner foo
processed file: c:\test
Successfully processed 1 files; Failed
processing 0 files

Unfortunately, icacls.exe can’t show
you the owner of an object. There is
no way to actually see, from the com-
mand line, who the owner of an object
is. Furthermore, if you save the ACL
for an object, it does not save the own-
er of the object.

There is also a bug in icacls.exe in
that it does not invoke SeTakeOwner
shipPrivilege to change the owner. If
you have the right to change the own-
er of an object based on the ACL, then
icacls.exe works as it should. However,
if you are an administrator, but you
do not have permission to change the
owner based on the object’s ACL, you
cannot use icacls.exe to do so because
of that bug. In that case, you need to
use the takeown.exe tool, which does
invoke the SeTakeOwnershipPrivilege,
but can only change the owner to your
account or the Administrators group,
not to an arbitrary account:

C:\>takeown /f c:\test

SUCCESS: The file (or folder): “c:\test” now
owned by user “JJ-VistaRTMTst\Jesper”.

Of course, it should be noted that the
subinacl tool, which is downloadable
from the Microsoft Download center,
also has a setowner switch. Subinacl
actually works more intuitively than
icacls in many cases, but it is also far
more complicated to use.

Find files for a particular user
Icacls has another useful function: it
can find files that have permissions for
particular users. For example:

C:\windows\system32>icacls “c:\program files”
/findsid jesper /t

SID Found: c:\program files\Passgen\
passgen.exe.
Successfully processed 1808 files; Failed
processing 0 files

This could be helpful if you are try-
ing to find out what a particular user
might have access to.

Resetting and changing ACLs
If an ACL has become corrupted
or destroyed, icacls.exe has a way to
reset it to inherit from its parent. This
is something that would have been
extremely useful during a zero-day
security issue that hit in the autumn
of 2006.

One method used to mitigate the
issue in a Windows component was
to deny Everyone access to the ob-

ject. That part was easy, but removing
that Access Control Entry (ACE) was
nearly impossible using built-in tools
in Windows XP and Windows Server
2003. However, in Windows Vista, you
would simply run this command:

C:\windows\system32>icacls “c:\program files\
passgen\passgen.exe” /reset

processed file: c:\program files\passgen\
passgen.exe
Successfully processed 1 files; Failed
processing 0 files

Icacls.exe, of course, has all the stan-
dard grant/deny/remove operations.
The only really new item in that list
is remove. Using this switch, you can
remove all allow ACEs, all deny ACEs,
or both for a given user from a specif-
ic object or hierarchy. Figure 3 shows
examples of some different grant, re-
move and deny operations.

The ability to remove only the deny
ACEs can be useful if you want to
open access to an object up to a par-
ticular group or user.

C:\>icacls c:\test /grant foo:(F)
processed file: c:\test

Successfully processed 1 files; Failed processing 0 files

C:\>icacls c:\test
c:\test JJ-VistaRTMTst\foo:(F)
 BUILTIN\Administrators:(I)(F)
 BUILTIN\Administrators:(I)(OI)(CI)(IO)(F)

Successfully processed 1 files; Failed processing 0 files

C:\>icacls c:\test /remove:g foo
processed file: c:\test
Successfully processed 1 files; Failed processing 0 files

C:\>icacls c:\test
c:\test BUILTIN\Administrators:(I)(F)
 BUILTIN\Administrators:(I)(OI)(CI)(IO)(F)

Successfully processed 1 files; Failed processing 0 files

C:\>icacls c:\test /deny foo:(F)
processed file: c:\test
Successfully processed 1 files; Failed processing 0 files

C:\>icacls c:\test
c:\test JJ-VistaRTMTst\foo:(N)
 BUILTIN\Administrators:(I)(F)
 BUILTIN\Administrators:(I)(OI)(CI)(IO)(F)

Successfully processed 1 files; Failed processing 0 files

C:\>icacls c:\test /remove:d foo
processed file: c:\test
Successfully processed 1 files; Failed processing 0 files

C:\>icacls c:\test
c:\test BUILTIN\Administrators:(I)(F)
 BUILTIN\Administrators:(I)(OI)(CI)(IO)(F)

Successfully processed 1 files; Failed processing 0 files

Figure 3 Grant, deny and remove operations

TechNet Magazine September 2007 77

75_79_SecWatch.desfin.indd 77 8/8/07 16:33:55

Setting integrity levels
Icacls.exe also has the ability to display
and set integrity levels. Windows Vista
supports putting integrity labels on
objects. Icacls.exe is the command line
tool to use to do so:

C:\>icacls c:\test /setintegritylevel high

processed file: c:\test
Successfully processed 1 files; Failed
processing 0 files

C:\>icacls c:\test
c:\test BUILTIN\Administrators:(I)(F)
 BUILTIN\Administrators:(I)(OI)(CI)(IO)(F)
 Mandatory Label\High Mandatory Level:(NW)

Successfully processed 1 files; Failed
processing 0 files

Note that icacls.exe only displays an
integrity label if an object has one ex-
plicitly set. Most files do not, so it is
rare that you see one.

Finally, icacls.exe can verify that an
object has a canonical ACL. As men-
tioned earlier, third-party tools have
been known to put ACEs in the wrong
order in ACLs. Icacls.exe can verify,
and fix, those types of problems, as
shown here:

C:\>icacls c:\test /verify
processed file: c:\test

Successfully processed 1 files; Failed
processing 0 files

ACL UI
ACL UI, or the ACL User Interface, has
been modified slightly from the one in
Windows XP. Figures 4 and 5 show the
ACL UI dialog from Windows XP and
Windows Vista, respectively.

As you can see, there are a few
changes here. First, the dialog final-
ly shows the object you are operating
on very clearly, which can be useful if
you are working on several objects at
a time. Second, there is a hyperlink to
some help at the bottom.

However, the most notable change
is in the removal of the Add and
Remove buttons, replacing them with
an Edit button that is largely pres-
ent in support of the User Account
Control (UAC) in Windows Vista. As
you can see by the shield on the but-
ton, the user that launched this dia-
log does not have permission to edit

you get a dialog that is almost identi-
cal to the one you get in Windows XP
by clicking the Add button. The ACL
UI follows this dual-dialog concept in
several places; you get one dialog until
you elevate, and once you do, you get
the familiar old dialog from earlier ver-
sions of Windows.

If you click the Advanced button
and then the Auditing tab, you will al-
ways get an elevation button, as shown
in Figure 6. You cannot modify audit-
ing without elevating, even if you have
full control over the object and you
are the owner. That’s because the abil-
ity to modify an object SACL is gov-
erned by the SE_SECURITY_NAME
privilege, known as ‘Manage audit-
ing and security log’ in the GUI tools.
Only administrators have that right by
default. However, the privilege is re-
moved from an administrator in admin
approval mode (when UAC is enabled),
necessitating the elevation even if you
are an administrator.

One final note on elevation needs
when you modify ACLs: all these state-
ments are contingent on your not dis-
abling UAC. If you disable UAC, all
behaviour reverts to what you had in
Windows XP, with the exception of
dialogs that look different. However,
no elevation will be required, pro-
vided you log on as an administrator
since your token will now have the
Administrators SID in it all the time.

Other tools
Icacls.exe is a very useful tool, and a
grand improvement over cacls.exe, but
it still suffers from some shortcomings.
Perhaps the most notable is that it can-
not manage access to any objects oth-
er than files and directories. Windows
Vista makes sparse changes to the
ACLs of other objects compared to
Windows XP, but there are still occa-
sions when you want to manage ACLs
on a service, a registry key, or even an
Active Directory object.

If you are a command-line junk-
ie, you need subinacl.exe to do this.
Subinacl.exe is in the support tools, and

Figure 4	 ACL UI dialog in Windows XP

Figure 5	 The ACL UI dialog box in
Windows Vista

the ACL, and therefore will require
elevation before she can edit the per-
missions. Note that this would not be
the default if you create a folder in the
root of the C: drive and immediately
check properties on it. As the owner of
the folder you would have implicit per-
missions to edit the ACL and the shield
would be missing. The shield signifies a
COM Moniker, which is a mechanism
used to launch an elevation prompt
for a portion of a running process. If
you click the Edit button, you get the
familiar elevation dialog, and if you
click Continue in the elevation dialog,

78 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

Security watch

75_79_SecWatch.desfin.indd 78 8/8/07 16:33:59

is also available as a download (www.
microsoft.com/uk/securitywatch).

I have to warn you though, subin
acl.exe is not easy to use. In fact, it is
downright obtuse at times. However,
subinad.exe is an incredibly power-
ful tool for managing access control.
Every power admin needs this tool.

Registry ACLs
The registry ACLs have undergone
changes just like the file system ACLs.
The changes are much smaller in scope
than the changes to the file system,
though. The most obvious difference
from earlier versions of Windows is
that, due to the deprecation of Power
Users, almost all the Power User ACEs
are gone. Power Users are not supposed
to be any more powerful than any oth-
er users. It is a testament to just how
complicated ACLs really are, though,
that not all the ACEs for Power Users
are actually gone. A few were, unfortu-
nately, missed.

While you are looking at ACLs in
the registry, in a few places you will see
an ACE for a SID called RESTRICTED.
This is not new to Windows Vista, but
it is an interesting and not well un-
derstood SID. The RESTRICTED SID
denotes any process that presents a
restricted token. A restricted token is
created by using a special feature of
the CreateRestrictedToken API. Such
a token has one or more restricting
SIDs – SIDs that are used in a separate
access check.

Let’s say we have a process run-
ning with a restricted token. If that
process attempts to access an object
with an ACE for the RESTRICTED
SID, Windows actually performs two
access checks. The first is the normal
access check. The second one works
exactly like the first, but takes place
only against the restricting SIDs in the
token. Both access checks must pass.

Currently, there are several ACLs
that use the RESTRICTED SID, partic-
ularly on the registry. A screen shot of
such an ACL is shown in Figure 7.

At this time, few processes make use

of the restricted token functionality,
particularly with respect to restrict-
ing SIDs. One example of a process
that does is the service process that
hosts the Windows Firewall, the Base
Filtering Engine and the Diagnostic
Policy Service. It also uses a write re-
stricted token. Based on my findings,
only nine services currently use RE
STRICTED and write restricted to-
kens in Windows Vista.

As with recent previous versions of
Windows, the best practice with re-
spect to registry permissions is to tread
very carefully. Except in exceptional
– and highly targeted – circumstanc-
es, do not modify permissions in the
registry. Given the complicated inher-
itance model and the sensitive opera-
tions performed on the registry, you
run an unacceptably high likelihood

of fatal failure if you modify ACLs in
the registry carelessly.

Summary
As with most versions of Windows,
there are some subtle changes to access
control in Windows Vista. However,
unlike some of the other recent ver-
sions, there are actually a lot of minor
changes that add up to a fairly signifi-
cant change in behaviour. UAC, in par-
ticular, required several changes, such
as the integrity labels and modifica-
tions to the ACL UI. In addition, we
have the first major clean-up of ACLs
in recorded history.

In many ways, the default ACLs
on Windows actually got simpler in
Windows Vista, something that has
never happened before. As with previ-
ous versions, however, you should real-
ly tread carefully around access control
until you understand it thoroughly.
This is especially true with new ver-
sions of the OS. Hopefully, using the
tools outlined in this article, you will
be able to make your exploration of
ACLs far less painful.	 ■

Figure 6	 Modifying the audit settings in Windows Vista always
requires elevation

Figure 7	 The Registry ACLs include
an ACE for RESTRICTED in several
places

Jesper M Johansson is a Principal
Security Engineer working on software
security issues and is a contributing
editor to TechNet Magazine. He holds
a PhD in MIS and has over 20 years
experience in computer security. This col-
umn is adapted from Roger Grimes and
Jesper Johansson’s new book, Windows
Vista Security: Securing Vista Against
Malicious Attacks (Wiley, 2007).

TechNet Magazine September 2007 79

75_79_SecWatch.desfin.indd 79 8/8/07 16:34:04

