
Progress report
Don Jones

Windows PowerShell

I was recently writing a fairly long and
complicated Windows PowerShell script
that, as it was running, became fairly
unresponsive. I had written it to be run as
a scheduled task, so it didn’t really produce
much in the way of visible output. When
I ran it for its first big test, I nevertheless
started to get a bit worried that I’d
accidentally written an infinite loop or
some other problematic bit of script.

As the shell just sat there, patheti-
cally blinking its little cursor, I asked
myself, “Did I kill it?” Apparently, I
have no confidence in myself because
I quickly hit Ctrl+C to break the script.
Time to add some progress reporting.

Blather, blather, blather
The first thing I wanted to do was to
add a bunch of status messages, letting
me know exactly what the script was
doing. The shell lets you do this quite
easily with the Write-Verbose cmdlet.
Go ahead and try it in the shell:

Write-Verbose “Test Message”

If you just tried this, you will have
noticed that it didn’t do anything.
That’s because Write-Verbose sends
objects to the special Verbose pipeline,
which, by default, doesn’t display its
output. A built-in shell variable, $Ver
bosePreference, controls this pipeline.
The default value for this variable is
SilentlyContinue, which suppresses

verbose output. Setting it to Continue,
however, opens the pipeline:

$VerbosePreference = “Continue”

Now I can add a bunch of Write-Ver-
bose statements to my script and get a
detailed look at what’s going on as it
runs. And the beauty of this technique
is that, when I’ve finished testing and
troubleshooting, I can shut off all that
extra chatter by setting $VerbosePref-
erence back to SilentlyContinue at the
beginning of my script.

There’s no need to go and remove all
the Write-Verbose statements. In fact,
since they stay there in the script, any-
time I need to run the script manually,
I can easily switch the Verbose pipe-
line back on if necessary.

But I need real progress
Once I was satisfied that the script
wasn’t caught in an infinite loop and
was, in fact, working perfectly, I shut

This month, I want to take a look at one of my favourite troubleshooting cmd-
lets. Take this, for example:

Get-WMIObject Win32_Service | Where { $_.State -ne “Running” -and $_.StartMode -eq “Automatic”
} | ForEach-Object { $_.Start() }

On the surface, this would seem to start all services that are set to start auto-
matically but have not yet started for some reason. This doesn’t actually work,
though, and finding out why it doesn’t work can be tricky since you can’t peer
inside the middle of the pipeline. That is, you can’t peer inside the pipeline
unless you use Tee-Object.

Tee-Object redirects objects to a file (or into a variable) and passes them
down the pipeline. For example:

Get-WMIObject Win32_Service | Tee-Object AllServices.csv | Where { $_.State -ne “Running” -and
$_.StartMode -eq “Automatic” } | Tee-Object FilteredServices.csv | ForEach-Object { $_.Start()
}

This modification lets me see what happens after each pipeline command, and
I quickly discover that my FilteredServices.csv file contains nothing! No wonder
this script didn’t work! A bit more research reveals the root cause of the prob-
lem – StartMode is ‘Auto’ not ‘Automatic’ – and Tee-Object let me pinpoint
exactly where the problem was occurring.

Cmdlet of the month: Tee-Object

TechNet Magazine May 2008 75

off the Verbose pipeline and ran it
again – just to be sure.

The problem now is that, despite
knowing that the script is functioning
perfectly fine, I just can’t bear staring
at a blinking cursor. (I have attention
span issues. I desperately looked for
some paint so I could sit and watch it
dry instead.)

What I needed was a general indi-
cation of how far along the script had
progressed and some idea of when it
would be done. Basically, I wanted
something like a progress bar.

Fortunately, Windows PowerShell™
includes the Write-Progress cmdlet.
This cmdlet doesn’t provide a graphical
progress bar like you see in Windows,
but it does produce a nice progress bar
nonetheless, as shown in Figure 1. It
looks a bit like the file copy progress
bar used by the text-based portion of
Setup in Windows Server 2003 or even
Windows XP.

Using Write-Progress requires a bit
of explanation. Actually, I think an ex-
ample would be even better. Consider
this script:

for ($a=1; $a -lt 100; $a++) {
 Write-Progress -Activity “Working...” `
 -PercentComplete $a -CurrentOperation
 “$a% complete” `
 -Status “Please wait.”
 Start-Sleep 1
}

It uses Write-Progress to display a
progress bar. I’ve used Start-Sleep to
make the script pause one second each
time through the loop, so that it exe-
cutes slowly enough for us to actually
see the progress – without the pause,
the loop counts from 0 to 100 so quick-
ly that the progress bar merely flashes
briefly on the screen.

As you can see, the Activity – which
I’ve set to Working – shows up in the
top of the progress bar. The Status
is shown right below it, and the
CurrentOperation is shown at the
bottom. The shell only supports a sin-
gle progress bar at a time. Any use of
Write-Progress will either create a
new progress bar if one isn’t current-
ly shown or update the bar that is cur-
rently shown.

What I haven’t done here is told the
bar to actually go away when it’s fin-
ished. I can do that by simply adding
this to the end of my script:

Write-Progress -Activity “Working...” `
 -Completed -Status “All done.”

Generally speaking, the progress bar
will vanish by itself once your script
is complete, but if your script has oth-
er things to do you’ll want to hide the
progress bar when you’re done with
it; the -Completed parameter simply
removes the bar from the display.

Tick, tick, tick
Another common use for Write-Prog-
ress is to create a ‘seconds remaining’
display, rather than an actual progress
bar. Here’s an example:

for ($a=100; $a -gt 1; $a--) {
 Write-Progress -Activity “Working...” `
 -SecondsRemaining $a -CurrentOperation
 “$a% complete” `
 -Status “Please wait.”
 Start-Sleep 1
}

All I’ve done here is change the
loop to count from 100 to 1, and I
used the SecondsRemaining parame-
ter of Write-Progress, rather than Per
centComplete. The result is shown in
Figure 2. As you can see, the progress
meter is gone, replaced by a countdown
clock. The shell automatically converts
the total number of seconds remain-
ing into hours, minutes and seconds,
offering more user-friendly informa-
tion. The percent complete shown
here actually counts down from 100,
since that’s simply the CurrentOpera-
tion parameter I provided. There is no
actual calculation of percent complet-
ed; the Windows PowerShell is simply
displaying the current value of $a fol-
lowed by the string “% complete.”

Scripts that communicate
I’m a big fan of writing scripts that

communicate what they’re up to. It
can take the form of verbose output or
just a simple progress bar. It can be in-
tended for my own attention-deficient
benefit or for the benefit of someone
else who will need to run my script
months from now. In the end, display-
ing some kind of status and progress
information will be a huge benefit.

For more help, read the Windows
Powershell blog at: http://blogs.msdn.
com/powershell 			 ■

Don Jones is a contributing editor for
TechNet Magazine and co-author of
Windows PowerShell: TFM (SAPIEN
Press, 2007). He teaches Windows
PowerShell (www.ScriptingTraining.com)
and can be reached through the
ScriptingAnswers.com web site.

Figure 1	 How far
has your script
progressed?

Figure 2	 How long
until your script is
complete?

76 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

