
Windows administration

This is the first part
of a series on what’s
new in the Windows
Vista kernel. In this
issue, I’ll look at
changes in the areas of
processes and threads,
and in I/O. Future
instalments will cover
memory management,
startup and shutdown,
reliability and recovery,
and security.

Mark Russinovich

At a glance:
Thread priority and
scheduling
File-based symbolic links
Cancelling I/O operations

Inside the Windows Vista
kernel: Part 1

The scope of this article comprises changes
to the Windows Vista kernel only, specifi-
cally Ntoskrnl.exe and its closely associated
components. Please remember that there are
many other significant changes in Windows
Vista that fall outside the kernel proper and
therefore won’t be covered. This includes
improvements to the shell (such as integrat-
ed desktop search), networking (like the new
IPv6 stack and two-way firewall), and the next-
generation graphics model (such as Aero™
Glass, Windows Presentation Foundation,
the Desktop Window Manager, and the new
graphics driver model). Also not covered are
the new Windows User-Mode and Kernel-
Mode Driver Frameworks (UMDF and
KMDF) since these are back-level installable
on earlier versions of Windows.

CPU cycle counting
Windows Vista includes a number of en-
hancements in the area of processes and
threads that include use of the CPU cycle
counter for fairer CPU allocation and the
new Multimedia Class Scheduler Service

14 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

14_19_Vista_UK.desFIN.indd 14 27/3/07 13:49:49

(MMCSS) that helps media applications de-
liver glitch-free playback.

All versions of Windows NT® up to and
including Windows Vista program an inter-
val-timer interrupt routine to execute ap-
proximately every 10 or 15 ms (milliseconds),
depending on the hardware platform. The
routine looks at what thread it interrupted
and updates the thread’s CPU usage statis-
tics as if that thread had run for the entire in-
terval, while in reality the thread might have
started executing just before the interval’s
end. Further, the thread might have been
technically assigned the CPU, but didn’t get
a chance to run because hardware and soft-
ware interrupt routines executed instead.

While clock-based time accounting might
be OK for diagnostic tools that report thread
and process CPU usage, use of that meth-
od by the thread scheduler can cause unfair
CPU allocation. By default, on client versions
of Windows threads are permitted to run
up to 2 clock ticks (6 if in the foreground).
However, the thread might get virtually no
time on the CPU or up to 6 ticks (18 if in the
foreground), depending on its behaviour and
other activity on the system.

Figure 1 shows the unfairness that can oc-
cur when two threads that have the same pri-
ority become ready to run at the same time.
Thread A runs until the next time-slice inter-
val expiration when the scheduler assumes it
has run for the entire interval and so decides
that Thread A’s turn is finished. Furthermore,
Thread A gets unfairly charged for the inter-
rupt that occurred during its turn. At the
next interval, the scheduler picks Thread B
to take over and it runs for a full interval.

In Windows Vista, the scheduler uses the
cycle counter register of modern processors
to track precisely how many CPU cycles a
thread executes. By estimating how many
cycles the CPU can execute in a clock in-

terval, it can more accurately dole out turns
on the CPU. In addition, the Windows Vista
scheduler does not count interrupt execu-
tion against a thread’s turn. This means that
on Windows Vista a thread will always get
at least its turn on the CPU and never more
than an extra clock interval of execution, re-
sulting in greater fairness and more deter-
ministic app behaviour. Figure 2 shows how
Windows Vista responds to the scenario
shown in Figure 1 by giving both threads at
least one time slice interval of execution.

Threads A and B
become ready to run

Thread A

Interrupt

Interval � Interval �

Idle Thread B

Figure 1 Unfair thread scheduling

Threads A and B
become ready to run

Interval � Interval � Interval �

Interrupt

Idle Thread A Thread B

Figure 2 Windows Vista cycle-based scheduling

You can see the inaccuracy of the Windows standard clock-based time
accounting using the Process Explorer utility from Sysinternals (micro-
soft.com/technet/sysinternals). Run Process Explorer on a Windows Vista
system and add the Cycles Delta column to the process view. Cycles
Delta shows the number of cycles the threads of each process execute
between Process Explorer updates. Because CPU time accounting is still
based on the interval timer, if you also add the CPU Time column, then
you’ll see many processes that have threads consuming millions of CPU
cycles and yet don’t have their CPU time updated and don’t show up in
the CPU usage column.

Watching process CPU usage

Figure A Viewing CPU time and Cycles Delta in Process Explorer

TechNet Magazine April 2007 15

14_19_Vista_UK.desFIN.indd 15 27/3/07 13:49:50

The ‘Watching process CPU usage’ side-
bar illustrates how you can monitor pro-
cess CPU cycle usage for yourself using the
Process Explorer utility.

Multimedia Class Scheduler Service
Users expect multimedia applications, in-
cluding music and video players, to offer a
seamless playback experience. However, de-
mand for the CPU by other concurrently
running applications, like antivirus, content
indexing, or even the mail client, can result
in unpleasant hiccups. To provide a better
playback experience, Windows Vista intro-
duces MMCSS to manage the CPU priorities
of multimedia threads.

A multimedia app like Windows Media®
Player 11 registers with MMCSS using new
APIs that indicate its multimedia character-
istics, which must match one of those listed
by name under the following registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\
Currentversion\Multimedia\SystemProfile\Tasks

The various task keys specify how much
preference threads associated with different
multimedia types get for CPU and graphics
processor resources (though graphics proces-
sor resource management is not implement-
ed in Windows Vista). Figure 3 shows the
contents of one of the task registry keys after
a clean Windows Vista installation, though
third-party developers can add their own
task definitions.

MMCSS, which is implemented in
%SystemRoot%\System32\Mmcss.dll and
runs in a Service Host (Svchost.exe) process,
has a priority-management thread that runs
at priority 27. (Thread priorities in Windows
range from 0 to 31.) This thread boosts the
priority of registered multimedia threads
into the range associated with the Scheduling
Category value of their task’s registry key as
listed in Figure 4. In Windows, thread priori-
ties 16 and higher are in the real-time prior-
ity range and higher than all other threads on
a system (with the exception of the kernel’s
Memory Manager worker threads, which run
at priorities 28 and 29). Only administrative
accounts, like the Local System account in
which MMCSS executes, have the Increase
Priority privilege that’s required to set real-
time thread priorities.

When you play an audio file, Windows
Media Player registers Audio task threads,
and when you play a video, it registers Play-
back task threads. The MMCSS service
boosts all threads that have indicated that
they are delivering a stream at the same time
when they are running in the process that
owns the foreground window and when
they have the BackgroundOnly value set to
True in their task’s definition key.

But while MMCSS wants to help multi-
media threads get the CPU time they need,
it also wants to ensure that other threads get
at least some CPU time so that the system
and other applications remain responsive.
MMCSS therefore reserves a percentage of
CPU time for other activity, specified in the
following registry value:

HKLM\Software\Microsoft\Windows NT\Currentversion\
Multimedia\SystemProfile\SystemResponsiveness

By default, this is 20 percent; MMCSS
monitors CPU usage to ensure that multi-
media threads aren’t boosted for more than 8
ms over a 10 ms period if other threads want
the CPU. To get the multimedia threads out
of the way for the remaining 2 ms, the sched-
uler drops their priorities into the 1-7 range.

You can see how MMCSS boosts thread
priority by reading the ‘Watching MMCSS
priority boosting’ sidebar.

File-based symbolic links
The Windows Vista I/O-related chang-
es include file-based symbolic links, more

Scheduling Category Boosted thread priority

High 23-26

Medium 16-23

Figure 4 MMCSS thread priorities

Figure 3 Multimedia Class Scheduler audio task definition

16 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

Windows administration

14_19_Vista_UK.desFIN.indd 16 27/3/07 13:49:50

efficient I/O completion processing, com-
prehensive support for I/O cancellation and
prioritised I/O.

A file system feature many have considered
missing from NTFS, the symbolic file link (or
as it’s called in UNIX, the soft link) finally ar-
rives in Windows Vista. The Windows 2000
version of NTFS introduced symbolic direc-
tory links, called directory junctions, which
allow you to create a directory that points at
a different directory, but until the Windows
Vista version, NTFS has only supported hard
links for files.

A major difference in the way Windows re-
solves symbolic links and directory junctions
is where the processing takes place. Windows
processes symbolic links on the local system,
even when they reference a location on a re-
mote file server. Windows processes direc-
tory junctions that reference a remote file
server on the server itself. Symbolic links on
a server can therefore refer to locations that
are only accessible from a client, like other
client volumes, whereas directory junctions
cannot. To address this, Windows Vista sup-
ports the new symbolic link type for both
files and directories.

Many file system commands have been
updated to understand the implications
of symbolic links. For example, the Delete
command knows not to follow links, which
would result in deletion of the target, but to
delete the link instead. However, because not
all applications may handle symbolic links
correctly, creating a symbolic link requires
the new Create Symbolic Link privilege that
only administrators have by default.

You can create a symbolic link from a com-
mand prompt with the Mklink command.
The command prompt’s built-in directory
command identifies a symbolic link by flag-
ging it with <SYMLINK> and showing you
the target in brackets, as shown in Figure
5. Windows Explorer is also symbolic-link-
aware and shows them with the short-cut
arrow. You can see the target of a link in
Explorer by adding the Link Target column
to the browsing window.

I/O completion and cancellation
There are a number of under-the-hood chang-
es to the I/O system that can improve the
performance of server applications. These

applications commonly use a synchronisa-
tion object called a completion port to wait
for the completion of asynchronous I/O re-
quests. Prior to Windows Vista, when such
an I/O completed, the thread that issued the
I/O would execute I/O completion work,
causing a switch to the process the thread be-
longs to and interrupting whatever else was
going on. Then the I/O system would up-
date the completion port status to wake up
a thread waiting for it to change.

On Windows Vista, the I/O completion
processing is performed not necessarily by
the thread that issued the I/O, but instead
by the one that is waiting for the comple-

You can witness the thread boosting that the MMCSS service applies to
Windows Media Player threads by playing a video or audio clip, running
the Performance Monitor, setting the graph scale to 31 (the highest Win-
dows thread priority), and adding the Priority Current counter for all
instances of the Windows Media Player (Wmplayer.exe) thread objects to
the display. One or more threads will run at priority 21.

Figure B Thread priority boosting for Windows
Media Player

Watching MMCSS priority boosting

Figure 5 Using Mklink to create a symbolic link

TechNet Magazine April 2007 17

14_19_Vista_UK.desFIN.indd 17 27/3/07 13:49:51

tries to contact the nonexistent system,
but you can type Ctrl+C to terminate it. In
Windows XP, Ctrl+C has no effect and the
command doesn’t return until the network
operation times out.

Another type of I/O that has caused users
problems in past versions of Windows are
those that device drivers didn’t cancel proper-
ly because there was no easy way for them to
know that they should. If you’ve ever termi-
nated a process, but subsequently saw it lin-
gering in process-viewing tools, then you’ve
witnessed a device driver failing to respond
to a process termination and cancelling I/O
issued by the process that hadn’t completed.
Windows can’t perform final process clean-
up until all the process’ I/O has either fin-
ished or been cancelled. In Windows Vista,
device drivers easily register for notification
of process terminations and so most of the
un-killable process problems are gone.

I/O priority
While Windows has always supported prior-
itisation of CPU usage, it hasn’t included the
concept of I/O priority. Without I/O prior-
ity, background activities like search index-
ing, virus scanning and disk defragmenting
can severely impact the responsiveness of
foreground operations. A user launching an
app or opening a document while another
process is performing disk I/O, for example,
experiences delays as the foreground task
waits for disk access. The same interference
also affects the streaming playback of multi-
media content like songs from a hard disk.

Windows Vista introduces two new types
of I/O prioritisation in order to help make
foreground I/O operations get preference:
priority on individual I/O operations and I/O
bandwidth reservations. The Windows Vista
I/O system internally includes support for
five I/O priorities as shown in Figure 6, but
only four of the priorities are used (future
versions of Windows may support High).

I/O has a default priority of Medium and
the Memory Manager uses Critical when
it wants to write dirty memory data out to
disk under low memory situations to make
room in RAM for other data and code. The
Windows Task Scheduler sets the I/O priori-
ty for tasks that have the default task priority
to Low, and the priority specified by appli-

I/O priority Usage

Critical Memory Manager

High Unused

Normal Default priority

Low Default task priority

Very low Background activity

Figure 6 Windows Vista I/O priorities

tion port to wake it up. This relatively minor
change avoids needless thread scheduling
and context switches that can degrade the
application’s and the system’s overall per-
formance. To improve performance further,
a server can retrieve the results of multiple
I/O operations from a completion in one re-
quest, avoiding transitions to kernel mode.

Probably the most visible change in the
I/O system from an end-user perspective is
Windows Vista support for cancelling syn-
chronous I/O operations. If you’ve ever per-
formed a net view command or attempted to
access a share to an off-line remote system
using Windows XP or Windows Server 2003,
you’ve experienced the problems with I/O
operations that can’t be cancelled: the com-
mand or file browser won’t respond until
a network timeout expires. An application
has no choice but to wait until the opera-
tion fails because there’s no way for it to tell
the device driver executing the I/O that it
doesn’t care about the I/O anymore.

In Windows Vista most I/O operations
can be cancelled, including the open file I/O
that Net View and Explorer use. Applications
have to be updated to respond to end-user
requests to cancel I/O, however, and many
of the Windows Vista utilities that interact
with devices that have timeouts have the nec-
essary support. The file open and save dialogs
that are used by virtually every Windows ap-
plication, including third-party applications,
for example, now enable their Cancel but-
ton while trying to display the contents of
a folder. The Net command also cancels its
synchronous I/O when you press Ctrl+C.

You can see the benefits of I/O cancellation
by opening a command prompt on Windows
Vista and typing:

net view (\nonexistentmachine)

The command will hang while Windows

18 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

Windows administration

14_19_Vista_UK.desFIN.indd 18 27/3/07 13:49:51

Process Monitor, a real-time file system
and Registry monitoring utility from
Sysinternals, collects detailed informa-

Seeing Very Low I/O priority
tion for read and write file system op-
erations, including their I/O priorities
on Windows Vista. The highlighted line

shows an example of a Very Low prior-
ity I/O that was issued by SuperFetch,
(which I’ll discuss in my next instalment).

Figure C Viewing Very Low I/O priority in Process Monitor

cations written for Windows Vista that per-
form background processing is Very Low. All
of the Windows Vista background opera-
tions, including Windows Defender scan-
ning and desktop search indexing, use Very
Low I/O priority.

The system storage class device driver
(%SystemRoot%\System32\Classpnp.sys) en-
forces I/O priorities and so they automati-
cally apply to I/O directed at most storage
devices. The class and other storage driv-
ers insert Medium I/Os ahead of those that
are Low and Very Low in their queues, but
issue at least one waiting Low or Very Low
I/O every second so that background pro-
cesses can make forward progress. Data read
using Very Low I/O also causes the Cache
Manager to immediately write modifications
to disk instead of doing it later, and to bypass
its read-ahead logic for read operations that
would otherwise preemptively read from the
file being accessed. Take a look at the side-
bar ‘Seeing Very Low I/O priority’ for an ex-
ample of Very Low I/O priority using the
Process Monitor utility.

The Windows Vista bandwidth reserva-
tion support is useful for media player appli-
cations and Windows Media Player uses it,
along with MMCSS priority boosts, to de-
liver nearly glitch-free playback of local con-
tent. A media player application asks the I/O
system to guarantee it the ability to read data
at a specified rate and, if the device can de-
liver data at the requested rate and existing
reservations allow it, it gives the app guid-
ance as to how fast it should issue I/Os and

how large the I/Os should be. The I/O system
won’t service other I/Os unless it can satisfy
the requirements of apps that have made res-
ervations on the target storage device.

One final change in the I/O system worth
mentioning relates to the size of I/O oper-
ations. Since the first version of Windows
NT, the Memory Manager and the I/O sys-
tem have limited the amount of data pro-
cessed by an individual storage I/O request
to 64Kb. Thus, even if an application issues
a much larger I/O request, it’s broken into
individual requests having a maximum size
of 64Kb. Each I/O incurs an overhead for
transitions to kernel-mode and initiating
an I/O transfer on the storage device, so in
Windows Vista storage I/O request sizes are
no longer capped. Several Windows Vista
user-mode components have been modified
to take advantage of the support for larger
I/Os, including Explorer’s copy functionality
and the command prompt’s Copy command,
which now issue 1Mb I/Os.

Next up
Now you’ve seen two areas in which the
Windows Vista kernel has been enhanced.
You can expect additional in-depth informa-
tion in the next edition of my book, Windows
Internals (coauthored with David Solomon),
planned for release at the same time as the
next version of Windows Server, code-named
Longhorn. In my next instalment, I’ll con-
tinue introducing you to the new kernel by
discussing memory management along with
system startup and shutdown. ■

Mark Russinovich
is a Technical Fellow at
Microsoft in the Platform
and Services Division. He
is a coauthor of Microsoft
Windows Internals
(Microsoft Press, 2004) and
a frequent speaker at IT
and developer conferences.
He joined Microsoft with
the recent acquisition of
the company he cofounded,
Winternals Software. He
also created Sysinternals,
where he published the
Process Explorer, Filemon
and Regmon utilities.

TechNet Magazine April 2007 19

14_19_Vista_UK.desFIN.indd 19 27/3/07 13:49:51

