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Inside Windows Server 
2008 kernel changes

Windows Server 2008 is the latest release of the 
Microsoft server platform and it includes system-
level changes that span every functional area of 
the operating system, from memory management

Mark Russinovich

to thread scheduling and from networking 
to security, just to name a few. 

Because Windows Server® 2008 shares the 
same kernel as Windows Vista® SP1, it in-
cludes many of the enhancements that I cov-
ered in previous TechNet Magazine articles: 
‘Inside the Windows Vista Kernel’ (April and 
July 2007) and ‘Inside Windows Vista User 
Account Control’ (September and Novem-
ber 2007). Only a handful of the features I 
described in those articles are exclusively cli-
ent-focused and not included in Windows 
Server 2008, such as SuperFetch, ReadyBoost, 
ReadyDrive, ReadyBoot and the Multimedia 
Class Scheduler Service (MMCSS). 

Rather than repeat coverage of the impor-
tant kernel changes introduced in Windows 
Vista that are also in Windows Server 2008, 
such as I/O prioritisation, the new boot ar-
chitecture, BitLocker™, code integrity, and 
mandatory integrity levels, I’m going to fo-
cus on the key changes that I didn’t cover in 
those articles, including ones related to reli-

ability, performance, scalability, as well as the 
new Microsoft hypervisor machine virtuali-
sation technology, Hyper-V™. 

Also, like the previous articles, the scope of 
this one is restricted to the operating system 
kernel, Ntoskrnl.exe, as well as closely asso-
ciated system components. It does not cover 
changes to installation (WIM, or Windows® 
Imaging Format, and Component-Based 
Servicing), management (Group Policy and 
Active Directory® improvements), general di-
agnostics and monitoring (Windows Diag-
nostic Infrastructure), core networking (the 
new firewall and TCP/IP implementation), 
Server Core or Server Roles, for example. 

Working on multiprocessor systems
One of the low-level changes to the system 
is that Windows Server 2008 only includes 
a version of the kernel designed to work on 
multiprocessor systems. In the past, Win-
dows used a version specific to uniprocessors 
on machines with a single CPU because that 

This article is based on 
a prerelease version of 
Windows Server 2008.  
All information herein  
is subject to change.
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version could achieve slightly better perfor-
mance by omitting the synchronisation code 
required only in multiprocessor environ-
ments. As hardware has become faster, the 
performance benefit of the optimisations 
has become negligible, and most server sys-
tems today include more than one processor, 
making a uniprocessor version unnecessary. 

Figure 1 shows the variants of the Win-
dows Server 2008 kernel, where the version 
used on a system depends on whether it’s the 
debug (Checked) or retail version of the op-
erating system, whether the installation is 
32-bit or 64-bit (Itanium, Intel 64 or AMD64) 
and, if it’s a 32-bit installation, whether the 
system has more than 4GB of physical mem-
ory or supports Data Execution Prevention 
(DEP). Windows Server 2008 is also the last 
Windows Server operating system that is ex-
pected to offer a 32-bit version.

Every release of Windows Server focuses 
on improving the performance of key serv-
er scenarios such as file serving, network I/O 
and memory management. In addition, Win-
dows Server 2008 has several changes and 
new features that allow Windows to take 
advantage of new hardware architectures, 
adapt to high-latency networks and remove 
bottlenecks that constrained performance in 
previous versions of Windows. This section 
reviews enhancements in the memory man-
ager, I/O system and the introduction of a 
new network file system, SMB 2.0. 

Memory management
The memory manager includes several per-
formance enhancements in Windows Server 
2008. For example, it issues fewer and larg-
er disk I/Os than it does on Windows Server 
2003 when fetching data from the paging file 
or performing read-ahead I/Os on mapped 
files. The larger file I/Os are facilitated by 
changes in the I/O system that remove a 
64KB I/O-size limit that’s been present since 
the first release of Windows NT®. 

Also, it’s important to note that data reads 
for read-ahead (speculative reads) from map
ped files by the Cache Manager are typically 
twice as large on Windows Server 2008 than 
they are on Windows Server 2003 and go di-
rectly into the standby list (the system’s code 
and data cache). This behaviour occurs in-
stead of requiring the Cache Manager to map 
virtual memory and read the data into the 
System’s working set (memory assigned to 
the System by the memory manager), which 
might cause other in-use code or data to be 
needlessly evicted from the working set.

The memory manager also performs larg-
er I/Os when writing data to the paging file. 
Whereas Windows Server 2003 often per-
formed writes of even less than 64KB, on 
Windows Server 2008 the memory manager 
commonly issues 1MB writes. 

Besides improving performance by reduc-
ing the number of writes to the paging file, the 
larger writes also reduce fragmentation within 
the paging file. This in turn causes a reduction 
in the number of reads and disk seeks that are 
required to read back multiple pages, since they 
will more often than not be adjacent. 

The memory manager tries to write out 
other modified pages that are close to the one 
being written out in the owning process’s 
address space, and it targets the area of the 
paging file where other neighbouring pages 
already reside. This minimises fragmentation 
and can improve performance because pages 
that might eventually be written out to the 
paging file have already been written. It also 
reduces the number of paging reads required 
to pull in a range of adjacent process pages. 
Look at the sidebar ‘Experiment: seeing large 
disk I/Os’ for more information on the mem-
ory manager’s use of large I/Os.

SMB 2.0
The Server Message Block (SMB) remote file 
system protocol, also known as Common In-
ternet File System (CIFS), has been the ba-
sis of Windows file serving since file serving 
functionality was introduced into Windows. 
Over the last several years, SMB’s design lim-
itations have restricted Windows file serving 
performance and the ability to take advan-
tage of new local file system features. For 
example, the maximum buffer size that can 
be transmitted in a single message is about 

Kernel 32-bit 64-bit 

Multiprocessor Yes Yes

Multiprocessor Checked Yes Yes

Multiprocessor Physical Address Extension (PAE) Yes No

Multiprocessor PAE Checked Yes No

Figure 1	 Windows Server 2008 kernel variants
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60KB, and SMB 1.0 was not aware of NTFS 
client-side symbolic links that were added in 
Windows Vista and Windows Server 2008. 

Windows Vista and Windows Server 2008 
introduce SMB 2.0, which is a new remote 
file serving protocol that Windows uses 
when both the client and server support it. 
Besides correctly processing client-side sym-
bolic links and other NTFS enhancements, 
SMB 2.0 uses batching to minimise the num-
ber of messages exchanged between a client 
and a server. Batching can improve through-
put on high-latency networks like wide-area 
networks (WANs) because it allows more 
data to be in flight at the same time. 

Whereas SMB 1.0 issued I/Os for a single 
file sequentially, SMB 2.0 implements I/O 
pipelining, allowing it to issue multiple con-
current I/Os for the same file. It measures 
the amount of server memory used by a cli-
ent for outstanding I/Os to determine how 
deeply to pipeline. 

Because of the changes in the Windows  
I/O memory manager and I/O system, TCP/
IP receive window auto-tuning, and im-
provements to the file copy engine, SMB 
2.0 enables significant throughput improve-
ments and reduction in file copy times for 
large transfers. Since both operating systems 
implement SMB 2.0, deploying Windows 
Server 2008 file servers with Windows Vista 
clients enables the use of SMB 2.0 and the re-
alisation of these performance benefits. 

Reliability with NTFS self-healing
Reliability is a key server attribute, and Win
dows Server 2008 delivers various improve-
ments that help administrators keep their 
server running smoothly, including online 
NTFS consistency repair, a new hardware er-
ror-reporting infrastructure and extensions 
to the Driver Verifier.

With today’s multi-terabyte storage devic-
es, taking a volume offline for a consistency 
check can result in a multi-hour service out-
age. Recognising that many disk corruptions 
are localised to a single file or portion of 
metadata, Windows Server 2008 implements 
a new NTFS self-healing feature to repair 
damage while a volume remains online. 

When NTFS detects corruption, it pre-
vents access to the damaged file or files and 
creates a system worker thread that executes 

Chkdsk-like corrections to the corrupted 
data structures, allowing access to the re-
paired files when finished. Access to other 
files continues as normal during this opera-
tion, minimising service disruption. 

WHEA infrastructure
The Windows Hardware Error Architec
ture (WHEA) infrastructure included in 
Windows Server 2008 promises to simplify 
the management of hardware failures and  

You can use a file system monitoring tool like TechNet Sysinternals 
Process Monitor (technet.microsoft.com/sysinternals/bb896645.aspx) 
to look for large file I/O operations on a Windows Server 2008 system. 

There are several ways to go about generating large I/Os. If you 
have a second system running either Windows Vista Service Pack 1 or 
Windows Server 2008, then you can run Process Monitor on the server 
and monitor file copies to the second system. You can also usually 
generate large paging file I/Os by running a memory-intensive program 
that causes the memory manager to write pages out to the paging file. 

Figure A shows Process Monitor after running a memory-intensive 
program on a Windows XP system, with the Enable Advanced Output 
option checked in the Process Monitor Options menu and a filter set 
to only show writes to the paging file, pagefile.sys. The Detail column 
shows that the writes are 64KB in size.

When you run the same steps on Windows Server 2008, you’ll most 
likely see something similar to what is displayed in Figure B, which 
shows most of the writes to be approximately 1MB in size.

Experiment: seeing large disk I/Os

Figure A	Page file writes on Windows XP

Figure B	 Larger page file writes on Windows Server 2008
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enable proactive response to non-fatal errors. 
Servers often have strict uptime guarantees, 
so identifying and responding to errors in a 
timely manner on such systems is critical. 

Analysis of crashes submitted to Micro-
soft via Online Crash Analysis (OCA) shows 
that roughly 10 percent of operating system 
crashes are in response to a hardware fail-
ure, but determining the root cause of these 
crashes has been difficult or impossible be-
cause there’s insufficient error information 
provided by the hardware for capture in a 
crash. In addition, prior to Windows Serv-
er 2008, Windows had not provided built-in 
support for monitoring the health of devices 
or implemented remediation or notification 
of imminent failure. The reason behind this 
is that hardware devices don’t use a common 
error format and provide no support for er-
ror management software. 

WHEA provides a unified mechanism for 
error-source discovery and reporting for plat-
form devices, including processors, memory, 
caches and busses like PCI and PCI Express. 
It does so by implementing the architecture 
shown in Figure 2, where the core is a kernel 
API that error sources call to report errors. 
The API requires all errors to be formatted in 
a common way, and it logs errors using Event 
Tracing for Windows (ETW) events (fatal er-
rors are logged after a reboot). 

ETW was introduced in Windows 2000, and 
the WHEA use of ETW makes it easy for hard-
ware manufacturers and software vendors to 

develop device diagnostics management applica-
tions that consume WHEA events. If an event is 
severe enough to warrant a system crash, WHEA 
ensures that the fatal error record is stored in the 
crash dump file so that administrators can deter-
mine the crash’s root cause. 

Another key piece of WHEA is the Platform 
Specific Hardware Error Driver (PSHED) 
found in %Systemroot%\System32\Pshed.dll. 
The kernel links with PSHED, and it interfac-
es with platform and firmware hardware, es-
sentially serving as a translation layer between 
their error notifications and the WHEA error-
reporting API. There’s a Microsoft-supplied 
PSHED for each platform architecture (x86, 
x64, Itanium), and PSHED exposes a plug-in 
model so that hardware vendors and manu-
facturers can override the default behaviours 
with ones specific to their platforms. 

Finally, components of the system that 
interface with other error sources – includ-
ing device drivers, the Hardware Abstraction 
Layer (HAL) and the kernel – can imple-
ment Low-Level Hardware Error Handlers 
(LLHELs) that initially handle an error con-
dition. An LLHEL’s job is to extract error in-
formation from the device, notify PSHED 
to allow it to collect additional platform er-
ror information and then call the kernel’s 
WHEA error-reporting API. 

Driver Verifier
The Driver Verifier, a powerful tool for 
tracking down buggy device drivers and 
faulty hardware, has been included in ev-
ery copy of Windows since Windows 2000. 
Administrators commonly configure the 
Driver Verifier (%Systemroot%\System32\
Verifier.exe) to closely monitor the behav-
iour of device drivers suspected of causing 
system crashes. The Driver Verifier catches il-
legal driver operations so that a crash dump 
file points directly to the guilty party.

A drawback of previous Driver Verifier 
implementations is that most configuration 
changes require restarting the system, some-
thing that is obviously undesirable on a pro-
duction server. The Windows Server 2008 
implementation of Driver Verifier improves 
this process by removing the restart require-
ment for the most useful verifications, mak-
ing it possible to troubleshoot a problematic 
server without having to restart it. 

Figure 2	
WHEA error-
reporting 
infrastructure
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Driver Verifier introduces three new veri-
fications, visible in Figure 3. ‘Security checks’ 
ensures that device drivers set secure permis-
sions on the objects they use to interface with 
applications. ‘Force pending I/O requests’ 
tests a driver’s resilience to asynchronous 
I/O operations that complete immediately 
rather than after a delay. And ‘Miscellaneous 
checks’ looks for drivers improperly freeing 
in-use resources, incorrectly using Windows 
Management Instrumentation (WMI) regis-
tration APIs, and leaking resource handles. 

Scalability
Scalability refers to the ability of an operat-
ing system or application to effectively utilise 
multiple processors and large amounts of 
memory. Every release of Windows improves 
scalability by minimising or eliminating the 
use of locks that reduce parallelism on multi-
processors, and Windows Server 2008 is no ex-
ception to this trend. 

A relatively small but significant im-
provement is in the code that executes tim-
er expiration, which no longer acquires the 
dispatcher lock, a systemwide scheduler lock 
used by all low-level synchronisation opera-
tions. The resulting reduction in CPU syn-
chronisation overhead enables Windows 
Server 2008 terminal server systems to sup-
port about 30 percent more concurrent users 
than Windows Server 2003. 

Other scalability improvements in Win-
dows Server 2008 include completion port 
enhancements, a new threadpool implemen-
tation, more efficient use of Non-Uniform 
Memory Access (NUMA) hardware, and dy-
namic system partitioning. 

Improved I/O completion port handling
Most scalable Windows server apps, includ-
ing IIS, SQL Server® and Exchange Serv-
er, rely on a Windows synchronisation API 
called a completion port to minimise switch-
ing between multiple threads of execu-
tion when executing I/O operations. They 
do this by first associating notifications of 
new request arrivals, such as Web server cli-
ent connections, with a completion port and 
dedicating a pool of threads to wait for the 
notifications. When a request arrives, Win-
dows schedules a thread, which then usually 
executes other I/O operations like reading a 

Web page from disk and sending it the client 
to complete the request. 

So that the same thread can return to wait-
ing for more client requests as quickly as pos-
sible, the thread issues I/Os asynchronously 
and associates I/O completions with the 
completion port. The thread then returns to 
waiting on the completion port, which will 
schedule the thread when either a new re-
quest arrives or one of the I/Os completes. In 
this way, the same thread remains active on 
a CPU, alternately processing client requests 
and waiting on the completion port. 

A drawback of the completion port im-
plementation of prior Windows releases is 
that, when an I/O completed, the I/O system 
caused the thread that issued the I/O to im-
mediately perform a small bit of completion 
processing, regardless of whatever else it was 
doing. If other threads were active, that of-
ten caused the scheduler to preempt an ac-
tive thread and context switch to the issuer. 

Windows Server 2008 avoids these context 
switches by deferring completion processing 
to the next thread to wait on the comple-
tion port with which the I/O is associated. 
Thus, even if a different thread is the next to 
wait on the completion port, it will perform 
the completion processing before executing  
other code, and the scheduler does not need 
to switch to the issuing thread. This minimi-
sation of context switches can dramatical-
ly improve the scalability of heavily loaded 
server applications. 

Figure 3	 Driver Verifier with Windows Server 2008 options checked
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More efficient thread pools
Writing applications that take advantage of 
multiple CPUs can be difficult, so Windows 
XP introduced worker thread pools, an infra-
structure and associated API that abstracts 
the details of executing small units of work 
across CPUs. An application specifies the 
work items to the thread pool API, which 
then executes them on one of a number of 
threads that it creates and manages for each 
CPU in the system. 

The goal of the thread pool is to minimise 
context switches by using the same threads 
to execute multiple work items in succes-
sion. When that’s not possible because one 
of its threads is busy already performing oth-
er work, it executes the work item using a 
different thread on a different CPU. 

The Windows Server 2008 thread pool 
implementation makes better use of CPUs 
indirectly because it benefits from the com-
pletion port improvements and directly by 
optimising thread management so that work-
er threads dynamically come and go when 
needed to handle an application’s workload. 
Further, the core of the infrastructure has 
moved to kernel mode, minimising the num-
ber of system calls made by applications that 
use the API. Finally, the new API makes it 
easier for applications to perform certain op-
erations, such as aborting queued work units 
during application shutdown. 

NUMA optimisations
Windows Server 2003 introduced optimi-
sations for NUMA machines in the thread 
scheduler and memory manager, but Win-
dows Server 2008 adds NUMA optimisations 
in the I/O manager and extends the memory 
manager’s NUMA optimisations. 

NUMA systems are typically multiprocessor 
systems where memory has different latency 
depending upon which processor accesses it 
(see Figure 4). Memory is divided into nodes, 
where the latencies between CPUs and nodes 
can vary and each CPU is considered part of a 
node to which it has the fastest access. 

NUMA systems, especially ones with more 
than eight CPUs, are often more cost and 
performance efficient than uniform-mem-
ory access systems. While a uniform-memo-
ry access system must make memory equally 
available to all CPUs, a NUMA system can 

implement high-speed interconnections 
for memory directly connected to a CPU 
and cheaper higher-latency connections for 
CPUs and memory that are further apart.

To scale effectively on a NUMA system, 
an operating system or application must be 
aware of the node topology so that compu-
tation executes near the memory containing 
the computation’s data and code. For ex-
ample, the Windows scheduler assigns each 
thread a so-called ideal processor, which is 
the CPU on which the scheduler tries to al-
ways execute the thread. Doing this makes it 
more likely that data the thread places in the 
CPU’s cache is going to be available to the 
thread every time it runs. 

In Windows Server 2003, the schedul-
er expands this concept by considering the 
node containing the ideal processor to be the 
thread’s ideal node, and it tries to schedule 
the thread on another CPU in the ideal node 
when the ideal processor is busy executing a 
different thread. The Windows Server 2003 
memory manager also became NUMA-aware 
and, when possible, directs a thread’s memo-
ry allocations to the memory of the node on 
which the thread is executing. 

In Windows Server 2008, the memory man-
ager divides the kernel’s non-paged memory 
buffers (memory used by the kernel and de-
vice drivers to store data that is guaranteed 
to remain in RAM) across nodes so that allo-
cations come from the memory on the node 
on which the allocation originates. System 
page table entries (PTEs) are allocated from 
the node from where the allocation origi-
nates, if the allocation requires a new page 
table page to satisfy it, instead of from any 
node, as it does in Windows Server 2003.

In Windows Server 2003, when a thread 
makes a memory allocation, the memory 
manager would prefer the node on which 
the thread is executing at the time of the 
allocation. If the thread was momentarily 
scheduled onto a non-ideal node, any allo-
cations performed during that time would 
come from the non-ideal node. So when the 
thread eventually executes on its ideal node, 
it won’t be as close as it could be to the data 
or code stored in the allocated memory. 

To address this, the Windows Server 2008 
memory manager prefers a thread’s ideal 
node for all of a thread’s allocations, even 

The goal of 
the thread 
pool is to 
minimise 
context 
switches by 
using the 
same threads 
to execute 
multiple 
work items in 
succession
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when the thread is executing close to a dif-
ferent node. The memory manager also auto-
matically understands the latencies between 
processors and nodes, so if the ideal node 
doesn’t have available memory, it next checks 
the node closest to the ideal node. In addi-
tion, the memory manager migrates pages in 
its standby list to a thread’s ideal node when 
a thread references the code or data. 

Applications that want to control the local-
ity of their allocations can use new NUMA 
memory APIs that allow them to specify a 
preferred node for memory allocations, file 
mapping views and file mapping objects. 
For an allocation related to a file mapping, 
the memory manager checks to see whether 
the mapping operation specifies a node, then 
checks whether the file mapping object spec-
ifies one, and finally it falls back on going to 
the thread’s ideal node if neither do.

Prior to Windows Server 2008, the inter-
rupt and associated deferred procedure call 
(DPC) for a storage or network I/O can ex-
ecute on any CPU, including ones from a dif-
ferent node than the one on which the I/O 
initiated, potentially causing data read or 
written in the I/O operation to be in a dif-
ferent node’s memory than the one where 
the data is accessed. 

To avoid this, the Windows Server 2008  
I/O system directs DPC execution to a CPU 
in the node that initiated the I/O, and sys-
tems that have devices that support PCI bus 
MSI-X (an extension to the Message Signaled 
Interrupt standard) can further localise I/O 
completion by using device drivers that take 
advantage of Windows Server 2008 APIs to 
direct an I/O’s interrupt to the processor 
that initiated the I/O. 

Dynamic partitioning
One of the ways a system can be more scal-
able is for it to support the dynamic addi-
tion of hardware resources such as CPUs and 
memory. This same support can also make 
the system more available when those re-
sources can be replaced without requiring a 
system reboot. Windows Server 2003 includ-
ed hot-memory add, allowing servers with 
dynamic memory support to use RAM as an 
administrator adds it. Windows Server 2008 
extends dynamic memory support by allow-
ing memory to be replaced. 

RAM that becomes more reliant on Error 
Correcting Code (ECC) corrections is at risk 
of failing altogether, so on a server with hot-
replace support, Windows Server 2008 can 
transparently migrate data off failing mem-
ory banks and onto replacements. It does so 
by migrating data that’s under control of the 
operating system first, then effectively shut-
ting down hardware devices by moving them 
into a low-power state, migrating the rest of 
the memory’s data, then re-powering devices 
to continue normal operation. 

Windows Server 2008 also supports hot 
addition and hot replacement of processors. 
For a hot replacement, the hardware must 
support the concept of spare CPUs, which 
can be either brought online or added dy-
namically when an existing CPU generates 
failure indications, something currently only 
available in high-end systems. The Windows 
Server 2008 scheduler slows activity on the 
failing CPU and migrates work to the re-
placement, after which the failing CPU can 
be removed and replaced with a new spare. 

Windows Server 2008 support for hot pro-
cessor addition allows an administrator to 
upgrade a server’s processing capabilities with-
out downtime. However, the scheduler and  
I/O systems will only make a new CPU avail-
able to device drivers and applications that 
request notification of CPU arrival via new 
APIs because some applications build in the 
assumption that the number of CPUs is fixed 
for a boot session. For instance, an application 
might allocate an array of work queues cor-
responding to each CPU, where a thread uses 
the queue associated with the CPU on which 

Figure 4	 Example 
NUMA system
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it’s executing. If the scheduler put one of the 
application’s threads on a new CPU, it would 
try to reference a non-existent queue, poten-
tially corrupting the application’s data and 
most likely crashing the application. 

Microsoft server-based applications like 
SQL Server and Exchange Server are CPU 
addition capable, as are several core Win-
dows processes, including the System 
process, Session Manager (%SystemRoot%\
System32\Smss.exe,) and Generic Service 
Hosting processes (%Systemroot%\Sys-
tem32\Svchost.exe). Other processes can also 
request notification of new CPU arrival us-
ing a Windows API. When a new CPU ar-
rives, Windows notifies device drivers of the 
impending arrival, starts the CPU and then 
notifies device drivers and applications writ-
ten to take advantage of new CPUs so that 
they allocate data structures to track activity 
on the new CPU, if necessary. 

Machine virtualisation
Prior to Windows Server 2008, Microsoft 
virtualisation products, including Virtual 
Server 2005, have been implemented using 
hosted virtualisation, as shown in Figure 5. 
In hosted virtualisation, virtual machines are 
implemented by a Virtual Machine Monitor 
(VMM) that runs alongside a host operating 
system, typically as a device driver. The VMM 
relies on the host operating system’s resource 
management and device drivers, and when 
the host operating system schedules it to ex-
ecute, it time-slices the CPU among active 
virtual machines (VMs). 

Hyper-V, previously code-named ‘Viridian’, 
is implemented using hypervisor virtualisa-

tion. The hypervisor is in full control of all 
hardware resources, and even the Windows 
Server 2008 operating system that boots the 
system and through which you control VMs 
is essentially running in a virtual machine, as 
seen in Figure 6. 

The hypervisor can partition the sys-
tem into multiple VMs and treats the boot-
ing instance of Windows Server 2008 as the 
master, or root, partition, allowing it direct 
access to hardware devices such as the disk, 
networking adaptors and graphics processor. 
The hypervisor expects the root to perform 
power management and respond to hard-
ware plug and play events. It intercepts hard-
ware device I/O initiated in a child partition 
and routes it into the root, which uses stan-
dard Windows Server 2008 device drivers to 
perform hardware access. In this way, servers 
running Hyper-V can take full advantage of 
Windows support for hardware devices.

When you configure Windows Server 
2008 with the Hyper-V server role, Windows 
sets the hypervisorimagelaunchtypeboot 
Boot Configuration Database (BCD) setting 
to auto and configures the Hvboot.sys device 
driver to start early in the boot process. If the 
option is configured, Hvboot.sys prepares 
the system for virtualisation and then loads 
either %Systemroot%\System32\Hvax64.exe 
or %Systemroot%\System32\Hvix64.exe into 
memory, depending on whether the system 
implements AMD-V or Intel VT CPU virtu-
alisation extensions, respectively.

Once loaded, the hypervisor uses the vir-
tualisation extensions to insert itself un-
derneath Windows Server 2008. User-mode 
applications use the x64 processor’s Ring 3 
privilege level and kernel-mode code runs at 
Ring 0, so the hypervisor operates at concep-
tual privilege level Ring minus 1, since it can 
control the execution environment of code 
running in Ring 0. 

When you use the Hyper-V management 
console to create or start a child partition, it 
communicates with the hypervisor using the 
%Systemroot%\System32\Drivers\Winhv.sys 
driver, which uses the publicly document-
ed hypercall API to direct the hypervisor to 
create a new partition of specified physical-
memory size and execution characteristics. 
The VM Service (%Systemroot%\System32\
Vmms.exe) within the root is what creates 

Figure 5	
Hosted machine 
virtualisation
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a VM Worker Process (%Systemroot%\Sys-
tem32\Vmwp.exe) for each child partition to 
manage the state of the child. 

One way Windows improves the perfor-
mance of child VM operating systems is that 
both Windows Server 2008 and Windows 
Vista implement enlightenments, which are 
code sequences that activate only when the 
operating system is running on a hypervi-
sor that implements the Microsoft hyper-
call API. By directly requesting services of 
the hypervisor, the child VM avoids virtu-
alisation code overhead that would result if 
the hypervisor had to guess the intent of the 
child operating system. 

For example, a guest operating system 
that does not implement enlightenments 
for spinlocks, which execute low-level mul-
tiprocessor synchronisation, would simply 
spin in a tight loop waiting for a spinlock 
to be released by another virtual processor. 
The spinning might tie up one of the hard-
ware CPUs until the hypervisor scheduled 
the second virtual processor. On enlightened 
operating systems, the spinlock code notifies 
the hypervisor via a hypercall when it would 
otherwise spin so that the hypervisor can im-
mediately schedule another virtual processor 
and reduce wasted CPU usage. 

Another way Windows Server 2008 im-
proves VM performance is to accelerate VM 
access to devices. Performance is enhanced 
by installing a collection of components, col-
lectively called the ‘VM integration compo-
nents’, into the child operating system. 

If you run a VM without installing integra-
tion components, the child operating system 
configures hardware device drivers for the 
emulated devices that hypervisor presents to 
it. The hypervisor must intervene when a de-
vice driver tries to touch a hardware resource 
in order to inform the Root partition, which 
performs device I/O using standard Windows 
device drivers on behalf of the child VM’s op-
erating system. Since a single high-level I/O 
operation, such as a read from a disk, may in-
volve many discrete hardware accesses, it can 
cause many transitions, called intercepts, into 
the hypervisor and the root partition. 

Windows Server 2008 minimises intercepts 
with three components: the Virtual Machine 
Bus Driver (%Systemroot%\System32\Driv-
ers\Vmbus.sys), Virtual Service Clients 

(VSCs) and Virtual Service Providers (VSPs). 
When you install integration components 
into a VM with a supported operating sys-
tem, VSCs take over the role of device driv-
ers and use the services of the Vmbus.sys 
driver in the child VM to send high-level I/
O requests to the Virtual Machine Bus Driv-
er in the Root partition via the hypercall 
and memory-sharing services of the hyper-
visor. In the root partition, Vmbus.sys for-
wards the request to the corresponding VSP, 
which then initiates standard Windows I/O 
requests via the root’s device drivers. 

As you can see, Windows Server 2008 plays 
a key role in the Microsoft machine virtuali-
sation strategy with its introduction of Hy-
per-V hypervisor-based virtualisation. Look 
for more information on these and other 
features in the next edition of my book, Mi-
crosoft Windows Internals, scheduled for pub-
lication later this year. 	 ■

Figure 6	 Hyper-V 
architecture
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