
At a glance:
Memory management and
SMB 2.0
NTFS self-healing,
Windows Hardware Error
Architecture and the
Driver Verifier
Scalability with I/O
completion ports, thread
pools and NUMA
Hyper-V virtualisation

Windows Server 2008

Inside Windows Server
2008 kernel changes

Windows Server 2008 is the latest release of the
Microsoft server platform and it includes system-
level changes that span every functional area of
the operating system, from memory management

Mark Russinovich

to thread scheduling and from networking
to security, just to name a few.

Because Windows Server® 2008 shares the
same kernel as Windows Vista® SP1, it in-
cludes many of the enhancements that I cov-
ered in previous TechNet Magazine articles:
‘Inside the Windows Vista Kernel’ (April and
July 2007) and ‘Inside Windows Vista User
Account Control’ (September and Novem-
ber 2007). Only a handful of the features I
described in those articles are exclusively cli-
ent-focused and not included in Windows
Server 2008, such as SuperFetch, ReadyBoost,
ReadyDrive, ReadyBoot and the Multimedia
Class Scheduler Service (MMCSS).

Rather than repeat coverage of the impor-
tant kernel changes introduced in Windows
Vista that are also in Windows Server 2008,
such as I/O prioritisation, the new boot ar-
chitecture, BitLocker™, code integrity, and
mandatory integrity levels, I’m going to fo-
cus on the key changes that I didn’t cover in
those articles, including ones related to reli-

ability, performance, scalability, as well as the
new Microsoft hypervisor machine virtuali-
sation technology, Hyper-V™.

Also, like the previous articles, the scope of
this one is restricted to the operating system
kernel, Ntoskrnl.exe, as well as closely asso-
ciated system components. It does not cover
changes to installation (WIM, or Windows®
Imaging Format, and Component-Based
Servicing), management (Group Policy and
Active Directory® improvements), general di-
agnostics and monitoring (Windows Diag-
nostic Infrastructure), core networking (the
new firewall and TCP/IP implementation),
Server Core or Server Roles, for example.

Working on multiprocessor systems
One of the low-level changes to the system
is that Windows Server 2008 only includes
a version of the kernel designed to work on
multiprocessor systems. In the past, Win-
dows used a version specific to uniprocessors
on machines with a single CPU because that

This article is based on
a prerelease version of
Windows Server 2008.
All information herein
is subject to change.

10 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

10_19-Inside_WS08k-39C436.desFIN10 10 11/2/08 11:58:43

Windows Server 2008

version could achieve slightly better perfor-
mance by omitting the synchronisation code
required only in multiprocessor environ-
ments. As hardware has become faster, the
performance benefit of the optimisations
has become negligible, and most server sys-
tems today include more than one processor,
making a uniprocessor version unnecessary.

Figure 1 shows the variants of the Win-
dows Server 2008 kernel, where the version
used on a system depends on whether it’s the
debug (Checked) or retail version of the op-
erating system, whether the installation is
32-bit or 64-bit (Itanium, Intel 64 or AMD64)
and, if it’s a 32-bit installation, whether the
system has more than 4GB of physical mem-
ory or supports Data Execution Prevention
(DEP). Windows Server 2008 is also the last
Windows Server operating system that is ex-
pected to offer a 32-bit version.

Every release of Windows Server focuses
on improving the performance of key serv-
er scenarios such as file serving, network I/O
and memory management. In addition, Win-
dows Server 2008 has several changes and
new features that allow Windows to take
advantage of new hardware architectures,
adapt to high-latency networks and remove
bottlenecks that constrained performance in
previous versions of Windows. This section
reviews enhancements in the memory man-
ager, I/O system and the introduction of a
new network file system, SMB 2.0.

Memory management
The memory manager includes several per-
formance enhancements in Windows Server
2008. For example, it issues fewer and larg-
er disk I/Os than it does on Windows Server
2003 when fetching data from the paging file
or performing read-ahead I/Os on mapped
files. The larger file I/Os are facilitated by
changes in the I/O system that remove a
64KB I/O-size limit that’s been present since
the first release of Windows NT®.

Also, it’s important to note that data reads
for read-ahead (speculative reads) from map
ped files by the Cache Manager are typically
twice as large on Windows Server 2008 than
they are on Windows Server 2003 and go di-
rectly into the standby list (the system’s code
and data cache). This behaviour occurs in-
stead of requiring the Cache Manager to map
virtual memory and read the data into the
System’s working set (memory assigned to
the System by the memory manager), which
might cause other in-use code or data to be
needlessly evicted from the working set.

The memory manager also performs larg-
er I/Os when writing data to the paging file.
Whereas Windows Server 2003 often per-
formed writes of even less than 64KB, on
Windows Server 2008 the memory manager
commonly issues 1MB writes.

Besides improving performance by reduc-
ing the number of writes to the paging file, the
larger writes also reduce fragmentation within
the paging file. This in turn causes a reduction
in the number of reads and disk seeks that are
required to read back multiple pages, since they
will more often than not be adjacent.

The memory manager tries to write out
other modified pages that are close to the one
being written out in the owning process’s
address space, and it targets the area of the
paging file where other neighbouring pages
already reside. This minimises fragmentation
and can improve performance because pages
that might eventually be written out to the
paging file have already been written. It also
reduces the number of paging reads required
to pull in a range of adjacent process pages.
Look at the sidebar ‘Experiment: seeing large
disk I/Os’ for more information on the mem-
ory manager’s use of large I/Os.

SMB 2.0
The Server Message Block (SMB) remote file
system protocol, also known as Common In-
ternet File System (CIFS), has been the ba-
sis of Windows file serving since file serving
functionality was introduced into Windows.
Over the last several years, SMB’s design lim-
itations have restricted Windows file serving
performance and the ability to take advan-
tage of new local file system features. For
example, the maximum buffer size that can
be transmitted in a single message is about

Kernel 32-bit 64-bit

Multiprocessor Yes Yes

Multiprocessor Checked Yes Yes

Multiprocessor Physical Address Extension (PAE) Yes No

Multiprocessor PAE Checked Yes No

Figure 1	 Windows Server 2008 kernel variants

12 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

10_19-Inside_WS08k-39C436.desFIN12 12 11/2/08 11:58:44

60KB, and SMB 1.0 was not aware of NTFS
client-side symbolic links that were added in
Windows Vista and Windows Server 2008.

Windows Vista and Windows Server 2008
introduce SMB 2.0, which is a new remote
file serving protocol that Windows uses
when both the client and server support it.
Besides correctly processing client-side sym-
bolic links and other NTFS enhancements,
SMB 2.0 uses batching to minimise the num-
ber of messages exchanged between a client
and a server. Batching can improve through-
put on high-latency networks like wide-area
networks (WANs) because it allows more
data to be in flight at the same time.

Whereas SMB 1.0 issued I/Os for a single
file sequentially, SMB 2.0 implements I/O
pipelining, allowing it to issue multiple con-
current I/Os for the same file. It measures
the amount of server memory used by a cli-
ent for outstanding I/Os to determine how
deeply to pipeline.

Because of the changes in the Windows
I/O memory manager and I/O system, TCP/
IP receive window auto-tuning, and im-
provements to the file copy engine, SMB
2.0 enables significant throughput improve-
ments and reduction in file copy times for
large transfers. Since both operating systems
implement SMB 2.0, deploying Windows
Server 2008 file servers with Windows Vista
clients enables the use of SMB 2.0 and the re-
alisation of these performance benefits.

Reliability with NTFS self-healing
Reliability is a key server attribute, and Win
dows Server 2008 delivers various improve-
ments that help administrators keep their
server running smoothly, including online
NTFS consistency repair, a new hardware er-
ror-reporting infrastructure and extensions
to the Driver Verifier.

With today’s multi-terabyte storage devic-
es, taking a volume offline for a consistency
check can result in a multi-hour service out-
age. Recognising that many disk corruptions
are localised to a single file or portion of
metadata, Windows Server 2008 implements
a new NTFS self-healing feature to repair
damage while a volume remains online.

When NTFS detects corruption, it pre-
vents access to the damaged file or files and
creates a system worker thread that executes

Chkdsk-like corrections to the corrupted
data structures, allowing access to the re-
paired files when finished. Access to other
files continues as normal during this opera-
tion, minimising service disruption.

WHEA infrastructure
The Windows Hardware Error Architec
ture (WHEA) infrastructure included in
Windows Server 2008 promises to simplify
the management of hardware failures and

You can use a file system monitoring tool like TechNet Sysinternals
Process Monitor (technet.microsoft.com/sysinternals/bb896645.aspx)
to look for large file I/O operations on a Windows Server 2008 system.

There are several ways to go about generating large I/Os. If you
have a second system running either Windows Vista Service Pack 1 or
Windows Server 2008, then you can run Process Monitor on the server
and monitor file copies to the second system. You can also usually
generate large paging file I/Os by running a memory-intensive program
that causes the memory manager to write pages out to the paging file.

Figure A shows Process Monitor after running a memory-intensive
program on a Windows XP system, with the Enable Advanced Output
option checked in the Process Monitor Options menu and a filter set
to only show writes to the paging file, pagefile.sys. The Detail column
shows that the writes are 64KB in size.

When you run the same steps on Windows Server 2008, you’ll most
likely see something similar to what is displayed in Figure B, which
shows most of the writes to be approximately 1MB in size.

Experiment: seeing large disk I/Os

Figure A	Page file writes on Windows XP

Figure B	 Larger page file writes on Windows Server 2008

TechNet Magazine March 2008 13

10_19-Inside_WS08k-39C436.desFIN13 13 11/2/08 11:58:45

Windows Server 2008

enable proactive response to non-fatal errors.
Servers often have strict uptime guarantees,
so identifying and responding to errors in a
timely manner on such systems is critical.

Analysis of crashes submitted to Micro-
soft via Online Crash Analysis (OCA) shows
that roughly 10 percent of operating system
crashes are in response to a hardware fail-
ure, but determining the root cause of these
crashes has been difficult or impossible be-
cause there’s insufficient error information
provided by the hardware for capture in a
crash. In addition, prior to Windows Serv-
er 2008, Windows had not provided built-in
support for monitoring the health of devices
or implemented remediation or notification
of imminent failure. The reason behind this
is that hardware devices don’t use a common
error format and provide no support for er-
ror management software.

WHEA provides a unified mechanism for
error-source discovery and reporting for plat-
form devices, including processors, memory,
caches and busses like PCI and PCI Express.
It does so by implementing the architecture
shown in Figure 2, where the core is a kernel
API that error sources call to report errors.
The API requires all errors to be formatted in
a common way, and it logs errors using Event
Tracing for Windows (ETW) events (fatal er-
rors are logged after a reboot).

ETW was introduced in Windows 2000, and
the WHEA use of ETW makes it easy for hard-
ware manufacturers and software vendors to

develop device diagnostics management applica-
tions that consume WHEA events. If an event is
severe enough to warrant a system crash, WHEA
ensures that the fatal error record is stored in the
crash dump file so that administrators can deter-
mine the crash’s root cause.

Another key piece of WHEA is the Platform
Specific Hardware Error Driver (PSHED)
found in %Systemroot%\System32\Pshed.dll.
The kernel links with PSHED, and it interfac-
es with platform and firmware hardware, es-
sentially serving as a translation layer between
their error notifications and the WHEA error-
reporting API. There’s a Microsoft-supplied
PSHED for each platform architecture (x86,
x64, Itanium), and PSHED exposes a plug-in
model so that hardware vendors and manu-
facturers can override the default behaviours
with ones specific to their platforms.

Finally, components of the system that
interface with other error sources – includ-
ing device drivers, the Hardware Abstraction
Layer (HAL) and the kernel – can imple-
ment Low-Level Hardware Error Handlers
(LLHELs) that initially handle an error con-
dition. An LLHEL’s job is to extract error in-
formation from the device, notify PSHED
to allow it to collect additional platform er-
ror information and then call the kernel’s
WHEA error-reporting API.

Driver Verifier
The Driver Verifier, a powerful tool for
tracking down buggy device drivers and
faulty hardware, has been included in ev-
ery copy of Windows since Windows 2000.
Administrators commonly configure the
Driver Verifier (%Systemroot%\System32\
Verifier.exe) to closely monitor the behav-
iour of device drivers suspected of causing
system crashes. The Driver Verifier catches il-
legal driver operations so that a crash dump
file points directly to the guilty party.

A drawback of previous Driver Verifier
implementations is that most configuration
changes require restarting the system, some-
thing that is obviously undesirable on a pro-
duction server. The Windows Server 2008
implementation of Driver Verifier improves
this process by removing the restart require-
ment for the most useful verifications, mak-
ing it possible to troubleshoot a problematic
server without having to restart it.

Figure 2	
WHEA error-
reporting
infrastructure

14 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

10_19-Inside_WS08k-39C436.desFIN14 14 11/2/08 11:58:46

Driver Verifier introduces three new veri-
fications, visible in Figure 3. ‘Security checks’
ensures that device drivers set secure permis-
sions on the objects they use to interface with
applications. ‘Force pending I/O requests’
tests a driver’s resilience to asynchronous
I/O operations that complete immediately
rather than after a delay. And ‘Miscellaneous
checks’ looks for drivers improperly freeing
in-use resources, incorrectly using Windows
Management Instrumentation (WMI) regis-
tration APIs, and leaking resource handles.

Scalability
Scalability refers to the ability of an operat-
ing system or application to effectively utilise
multiple processors and large amounts of
memory. Every release of Windows improves
scalability by minimising or eliminating the
use of locks that reduce parallelism on multi-
processors, and Windows Server 2008 is no ex-
ception to this trend.

A relatively small but significant im-
provement is in the code that executes tim-
er expiration, which no longer acquires the
dispatcher lock, a systemwide scheduler lock
used by all low-level synchronisation opera-
tions. The resulting reduction in CPU syn-
chronisation overhead enables Windows
Server 2008 terminal server systems to sup-
port about 30 percent more concurrent users
than Windows Server 2003.

Other scalability improvements in Win-
dows Server 2008 include completion port
enhancements, a new threadpool implemen-
tation, more efficient use of Non-Uniform
Memory Access (NUMA) hardware, and dy-
namic system partitioning.

Improved I/O completion port handling
Most scalable Windows server apps, includ-
ing IIS, SQL Server® and Exchange Serv-
er, rely on a Windows synchronisation API
called a completion port to minimise switch-
ing between multiple threads of execu-
tion when executing I/O operations. They
do this by first associating notifications of
new request arrivals, such as Web server cli-
ent connections, with a completion port and
dedicating a pool of threads to wait for the
notifications. When a request arrives, Win-
dows schedules a thread, which then usually
executes other I/O operations like reading a

Web page from disk and sending it the client
to complete the request.

So that the same thread can return to wait-
ing for more client requests as quickly as pos-
sible, the thread issues I/Os asynchronously
and associates I/O completions with the
completion port. The thread then returns to
waiting on the completion port, which will
schedule the thread when either a new re-
quest arrives or one of the I/Os completes. In
this way, the same thread remains active on
a CPU, alternately processing client requests
and waiting on the completion port.

A drawback of the completion port im-
plementation of prior Windows releases is
that, when an I/O completed, the I/O system
caused the thread that issued the I/O to im-
mediately perform a small bit of completion
processing, regardless of whatever else it was
doing. If other threads were active, that of-
ten caused the scheduler to preempt an ac-
tive thread and context switch to the issuer.

Windows Server 2008 avoids these context
switches by deferring completion processing
to the next thread to wait on the comple-
tion port with which the I/O is associated.
Thus, even if a different thread is the next to
wait on the completion port, it will perform
the completion processing before executing
other code, and the scheduler does not need
to switch to the issuing thread. This minimi-
sation of context switches can dramatical-
ly improve the scalability of heavily loaded
server applications.

Figure 3	 Driver Verifier with Windows Server 2008 options checked

TechNet Magazine March 2008 15

10_19-Inside_WS08k-39C436.desFIN15 15 11/2/08 11:58:47

Windows Server 2008

More efficient thread pools
Writing applications that take advantage of
multiple CPUs can be difficult, so Windows
XP introduced worker thread pools, an infra-
structure and associated API that abstracts
the details of executing small units of work
across CPUs. An application specifies the
work items to the thread pool API, which
then executes them on one of a number of
threads that it creates and manages for each
CPU in the system.

The goal of the thread pool is to minimise
context switches by using the same threads
to execute multiple work items in succes-
sion. When that’s not possible because one
of its threads is busy already performing oth-
er work, it executes the work item using a
different thread on a different CPU.

The Windows Server 2008 thread pool
implementation makes better use of CPUs
indirectly because it benefits from the com-
pletion port improvements and directly by
optimising thread management so that work-
er threads dynamically come and go when
needed to handle an application’s workload.
Further, the core of the infrastructure has
moved to kernel mode, minimising the num-
ber of system calls made by applications that
use the API. Finally, the new API makes it
easier for applications to perform certain op-
erations, such as aborting queued work units
during application shutdown.

NUMA optimisations
Windows Server 2003 introduced optimi-
sations for NUMA machines in the thread
scheduler and memory manager, but Win-
dows Server 2008 adds NUMA optimisations
in the I/O manager and extends the memory
manager’s NUMA optimisations.

NUMA systems are typically multiprocessor
systems where memory has different latency
depending upon which processor accesses it
(see Figure 4). Memory is divided into nodes,
where the latencies between CPUs and nodes
can vary and each CPU is considered part of a
node to which it has the fastest access.

NUMA systems, especially ones with more
than eight CPUs, are often more cost and
performance efficient than uniform-mem-
ory access systems. While a uniform-memo-
ry access system must make memory equally
available to all CPUs, a NUMA system can

implement high-speed interconnections
for memory directly connected to a CPU
and cheaper higher-latency connections for
CPUs and memory that are further apart.

To scale effectively on a NUMA system,
an operating system or application must be
aware of the node topology so that compu-
tation executes near the memory containing
the computation’s data and code. For ex-
ample, the Windows scheduler assigns each
thread a so-called ideal processor, which is
the CPU on which the scheduler tries to al-
ways execute the thread. Doing this makes it
more likely that data the thread places in the
CPU’s cache is going to be available to the
thread every time it runs.

In Windows Server 2003, the schedul-
er expands this concept by considering the
node containing the ideal processor to be the
thread’s ideal node, and it tries to schedule
the thread on another CPU in the ideal node
when the ideal processor is busy executing a
different thread. The Windows Server 2003
memory manager also became NUMA-aware
and, when possible, directs a thread’s memo-
ry allocations to the memory of the node on
which the thread is executing.

In Windows Server 2008, the memory man-
ager divides the kernel’s non-paged memory
buffers (memory used by the kernel and de-
vice drivers to store data that is guaranteed
to remain in RAM) across nodes so that allo-
cations come from the memory on the node
on which the allocation originates. System
page table entries (PTEs) are allocated from
the node from where the allocation origi-
nates, if the allocation requires a new page
table page to satisfy it, instead of from any
node, as it does in Windows Server 2003.

In Windows Server 2003, when a thread
makes a memory allocation, the memory
manager would prefer the node on which
the thread is executing at the time of the
allocation. If the thread was momentarily
scheduled onto a non-ideal node, any allo-
cations performed during that time would
come from the non-ideal node. So when the
thread eventually executes on its ideal node,
it won’t be as close as it could be to the data
or code stored in the allocated memory.

To address this, the Windows Server 2008
memory manager prefers a thread’s ideal
node for all of a thread’s allocations, even

The goal of
the thread
pool is to
minimise
context
switches by
using the
same threads
to execute
multiple
work items in
succession

16 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

10_19-Inside_WS08k-39C436.desFIN16 16 11/2/08 11:58:48

when the thread is executing close to a dif-
ferent node. The memory manager also auto-
matically understands the latencies between
processors and nodes, so if the ideal node
doesn’t have available memory, it next checks
the node closest to the ideal node. In addi-
tion, the memory manager migrates pages in
its standby list to a thread’s ideal node when
a thread references the code or data.

Applications that want to control the local-
ity of their allocations can use new NUMA
memory APIs that allow them to specify a
preferred node for memory allocations, file
mapping views and file mapping objects.
For an allocation related to a file mapping,
the memory manager checks to see whether
the mapping operation specifies a node, then
checks whether the file mapping object spec-
ifies one, and finally it falls back on going to
the thread’s ideal node if neither do.

Prior to Windows Server 2008, the inter-
rupt and associated deferred procedure call
(DPC) for a storage or network I/O can ex-
ecute on any CPU, including ones from a dif-
ferent node than the one on which the I/O
initiated, potentially causing data read or
written in the I/O operation to be in a dif-
ferent node’s memory than the one where
the data is accessed.

To avoid this, the Windows Server 2008
I/O system directs DPC execution to a CPU
in the node that initiated the I/O, and sys-
tems that have devices that support PCI bus
MSI-X (an extension to the Message Signaled
Interrupt standard) can further localise I/O
completion by using device drivers that take
advantage of Windows Server 2008 APIs to
direct an I/O’s interrupt to the processor
that initiated the I/O.

Dynamic partitioning
One of the ways a system can be more scal-
able is for it to support the dynamic addi-
tion of hardware resources such as CPUs and
memory. This same support can also make
the system more available when those re-
sources can be replaced without requiring a
system reboot. Windows Server 2003 includ-
ed hot-memory add, allowing servers with
dynamic memory support to use RAM as an
administrator adds it. Windows Server 2008
extends dynamic memory support by allow-
ing memory to be replaced.

RAM that becomes more reliant on Error
Correcting Code (ECC) corrections is at risk
of failing altogether, so on a server with hot-
replace support, Windows Server 2008 can
transparently migrate data off failing mem-
ory banks and onto replacements. It does so
by migrating data that’s under control of the
operating system first, then effectively shut-
ting down hardware devices by moving them
into a low-power state, migrating the rest of
the memory’s data, then re-powering devices
to continue normal operation.

Windows Server 2008 also supports hot
addition and hot replacement of processors.
For a hot replacement, the hardware must
support the concept of spare CPUs, which
can be either brought online or added dy-
namically when an existing CPU generates
failure indications, something currently only
available in high-end systems. The Windows
Server 2008 scheduler slows activity on the
failing CPU and migrates work to the re-
placement, after which the failing CPU can
be removed and replaced with a new spare.

Windows Server 2008 support for hot pro-
cessor addition allows an administrator to
upgrade a server’s processing capabilities with-
out downtime. However, the scheduler and
I/O systems will only make a new CPU avail-
able to device drivers and applications that
request notification of CPU arrival via new
APIs because some applications build in the
assumption that the number of CPUs is fixed
for a boot session. For instance, an application
might allocate an array of work queues cor-
responding to each CPU, where a thread uses
the queue associated with the CPU on which

Figure 4	 Example
NUMA system

TechNet Magazine March 2008 17

10_19-Inside_WS08k-39C436.desFIN17 17 11/2/08 11:58:49

Windows Server 2008

it’s executing. If the scheduler put one of the
application’s threads on a new CPU, it would
try to reference a non-existent queue, poten-
tially corrupting the application’s data and
most likely crashing the application.

Microsoft server-based applications like
SQL Server and Exchange Server are CPU
addition capable, as are several core Win-
dows processes, including the System
process, Session Manager (%SystemRoot%\
System32\Smss.exe,) and Generic Service
Hosting processes (%Systemroot%\Sys-
tem32\Svchost.exe). Other processes can also
request notification of new CPU arrival us-
ing a Windows API. When a new CPU ar-
rives, Windows notifies device drivers of the
impending arrival, starts the CPU and then
notifies device drivers and applications writ-
ten to take advantage of new CPUs so that
they allocate data structures to track activity
on the new CPU, if necessary.

Machine virtualisation
Prior to Windows Server 2008, Microsoft
virtualisation products, including Virtual
Server 2005, have been implemented using
hosted virtualisation, as shown in Figure 5.
In hosted virtualisation, virtual machines are
implemented by a Virtual Machine Monitor
(VMM) that runs alongside a host operating
system, typically as a device driver. The VMM
relies on the host operating system’s resource
management and device drivers, and when
the host operating system schedules it to ex-
ecute, it time-slices the CPU among active
virtual machines (VMs).

Hyper-V, previously code-named ‘Viridian’,
is implemented using hypervisor virtualisa-

tion. The hypervisor is in full control of all
hardware resources, and even the Windows
Server 2008 operating system that boots the
system and through which you control VMs
is essentially running in a virtual machine, as
seen in Figure 6.

The hypervisor can partition the sys-
tem into multiple VMs and treats the boot-
ing instance of Windows Server 2008 as the
master, or root, partition, allowing it direct
access to hardware devices such as the disk,
networking adaptors and graphics processor.
The hypervisor expects the root to perform
power management and respond to hard-
ware plug and play events. It intercepts hard-
ware device I/O initiated in a child partition
and routes it into the root, which uses stan-
dard Windows Server 2008 device drivers to
perform hardware access. In this way, servers
running Hyper-V can take full advantage of
Windows support for hardware devices.

When you configure Windows Server
2008 with the Hyper-V server role, Windows
sets the hypervisorimagelaunchtypeboot
Boot Configuration Database (BCD) setting
to auto and configures the Hvboot.sys device
driver to start early in the boot process. If the
option is configured, Hvboot.sys prepares
the system for virtualisation and then loads
either %Systemroot%\System32\Hvax64.exe
or %Systemroot%\System32\Hvix64.exe into
memory, depending on whether the system
implements AMD-V or Intel VT CPU virtu-
alisation extensions, respectively.

Once loaded, the hypervisor uses the vir-
tualisation extensions to insert itself un-
derneath Windows Server 2008. User-mode
applications use the x64 processor’s Ring 3
privilege level and kernel-mode code runs at
Ring 0, so the hypervisor operates at concep-
tual privilege level Ring minus 1, since it can
control the execution environment of code
running in Ring 0.

When you use the Hyper-V management
console to create or start a child partition, it
communicates with the hypervisor using the
%Systemroot%\System32\Drivers\Winhv.sys
driver, which uses the publicly document-
ed hypercall API to direct the hypervisor to
create a new partition of specified physical-
memory size and execution characteristics.
The VM Service (%Systemroot%\System32\
Vmms.exe) within the root is what creates

Figure 5	
Hosted machine
virtualisation

18 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

10_19-Inside_WS08k-39C436.desFIN18 18 11/2/08 11:58:50

a VM Worker Process (%Systemroot%\Sys-
tem32\Vmwp.exe) for each child partition to
manage the state of the child.

One way Windows improves the perfor-
mance of child VM operating systems is that
both Windows Server 2008 and Windows
Vista implement enlightenments, which are
code sequences that activate only when the
operating system is running on a hypervi-
sor that implements the Microsoft hyper-
call API. By directly requesting services of
the hypervisor, the child VM avoids virtu-
alisation code overhead that would result if
the hypervisor had to guess the intent of the
child operating system.

For example, a guest operating system
that does not implement enlightenments
for spinlocks, which execute low-level mul-
tiprocessor synchronisation, would simply
spin in a tight loop waiting for a spinlock
to be released by another virtual processor.
The spinning might tie up one of the hard-
ware CPUs until the hypervisor scheduled
the second virtual processor. On enlightened
operating systems, the spinlock code notifies
the hypervisor via a hypercall when it would
otherwise spin so that the hypervisor can im-
mediately schedule another virtual processor
and reduce wasted CPU usage.

Another way Windows Server 2008 im-
proves VM performance is to accelerate VM
access to devices. Performance is enhanced
by installing a collection of components, col-
lectively called the ‘VM integration compo-
nents’, into the child operating system.

If you run a VM without installing integra-
tion components, the child operating system
configures hardware device drivers for the
emulated devices that hypervisor presents to
it. The hypervisor must intervene when a de-
vice driver tries to touch a hardware resource
in order to inform the Root partition, which
performs device I/O using standard Windows
device drivers on behalf of the child VM’s op-
erating system. Since a single high-level I/O
operation, such as a read from a disk, may in-
volve many discrete hardware accesses, it can
cause many transitions, called intercepts, into
the hypervisor and the root partition.

Windows Server 2008 minimises intercepts
with three components: the Virtual Machine
Bus Driver (%Systemroot%\System32\Driv-
ers\Vmbus.sys), Virtual Service Clients

(VSCs) and Virtual Service Providers (VSPs).
When you install integration components
into a VM with a supported operating sys-
tem, VSCs take over the role of device driv-
ers and use the services of the Vmbus.sys
driver in the child VM to send high-level I/
O requests to the Virtual Machine Bus Driv-
er in the Root partition via the hypercall
and memory-sharing services of the hyper-
visor. In the root partition, Vmbus.sys for-
wards the request to the corresponding VSP,
which then initiates standard Windows I/O
requests via the root’s device drivers.

As you can see, Windows Server 2008 plays
a key role in the Microsoft machine virtuali-
sation strategy with its introduction of Hy-
per-V hypervisor-based virtualisation. Look
for more information on these and other
features in the next edition of my book, Mi-
crosoft Windows Internals, scheduled for pub-
lication later this year. 	 ■

Figure 6	 Hyper-V
architecture

Mark Russinovich is a Technical
Fellow at Microsoft in the Platform and
Services Division. He’s coauthor of Microsoft
Windows Internals (Microsoft Press, 2004)
and a frequent speaker at IT and developer
conferences, including Microsoft TechEd and
the Professional Developer’s Conference. Mark
joined Microsoft with the acquisition of the
company he co-founded, Winternals Software.
He also created Sysinternals, where he pub-
lished many popular utilities, including Process
Explorer, Filemon and Regmon.

TechNet Magazine March 2008 19

10_19-Inside_WS08k-39C436.desFIN19 19 11/2/08 11:58:52

