
Enterprises gather vast amounts of information
using a variety of methods. The data arrives via
e-mail, surveys, Web forms and other data
collection mechanisms. Data, usually, is a good
thing. However, managing the array of data
collection tools and all the disparate infor-
mation is difficult. Reliable integration and
secure sharing of data are constant chal-
lenges for IT organisations. Standards and
service-oriented architectures are evolv-
ing, making it easier for IT professionals to
make data more accessible, more securely.
But while you have the tools and technol-
ogies you need to build an efficient enter-
prise architecture, it is far too common to
get caught in a net of proprietary interfaces
– and this leads to isolated solutions.

Take the technologies available in the
2007 Microsoft Office system as an example.
You can quickly create a departmental sur-
vey based on Windows SharePoint® Services
3.0, but whether this is a standard solution
depends on your organisation. If your compa-
ny uses ASP.NET and SharePoint as the plat-
form for Web-based collaboration and data
integration, then this survey does provide a
standard solution. But if your environment
is like the one I work in, SharePoint is just
one platform among many.

Granted, SharePoint provides many op-

SharePoint

Keith Deshaies

At a glance:
Gathering and processing
data
Separating presentation
logic from information
management logic
Using Microsoft Office
2007 technologies to build
a data-gathering solution

A smart approach
to gathering data in
the enterprise

50 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

50_DataGathering_UK.desFIN.indd 50 11/2/08 11:05:47

tions for integrating with systems from IBM,
HP, Siebel, and so on. That’s good news for
power users who want to create ad hoc so-
lutions and still have the resulting data flow
into a variety of back-end systems. However,
if you’re a solution architect, there is an even
better way to go – InfoPath® 2007.

With InfoPath 2007, which is part of the
2007 Office system, you can decouple the
presentation logic of your solutions from
the information management logic hosted
on your servers. With XML-based InfoPath
technology, you can build enterprise-ready
data-gathering solutions. And, for the most
part, InfoPath form designers do not need
detailed knowledge of XML, Web services,
solution architectures, ASP.NET or the Share
Point object model.

In this article, I will discuss how you can
build flexible data-gathering solutions us-
ing InfoPath 2007, Office SharePoint Server
2007 and Forms Services. And I’ll show you
how XML enables you to separate the pre-
sentation logic from the business logic in a
multitier, enterprise architecture.

Note that when I refer to “data gathering”
I am referring to the process of collecting in-
formation from human sources. There are,
of course, other ways to gather data, such as
crawling data sources, but those automated
methods are beyond the scope of this article.

Acquiring and handling data
Data aquisition requirements can be compli-
cated, but these processes have some things
in common. By addressing these similari-
ties in centralised modules while handling
unique requirements in decentralised com-
ponents, you can limit redundant efforts,
maintenance overhead and the total cost of
ownership.

For example, compliance regulations for
public companies result in business require-
ments that in turn translate into compa-
ny-wide information management policies.
These policies affect data gathering solutions
across departmental boundaries and often
lead to duplicated efforts within individual
departments – for instance, rules around the
collection of personally identifiable infor-
mation gathered by an HR department (han-
dling employee info) and a customer- service
department (handling customer info). Even

business processes between individual de-
partments that are similar but unrelated pro-
vide opportunities for unifying information
management solutions.

Figure 1 shows an example of a typical
business process. An employee who wants to
trade an assignment with a colleague must
first obtain an agreement from the colleague,
then approval from a manager or coordina-
tor of the assignment schedule, and finally
from the supervisor. This could involve em-
ployees trading work shifts, for example.
Though these exchanges occur in differ-
ent departments and may rely on different
forms, the workflows and information man-
agement logic may be shared among the vari-
ous department solutions.

Of course, consolidating redundant com-
ponents is a huge task. Driving organisation-
al change across a company is not easy, but
with the Office system technologies you can
build a solid foundation to facilitate these
changes. InfoPath 2007 enables individual de-
partments to create forms applications that
integrate with centralised, standardised, in-
formation management systems. SharePoint
2007, meanwhile, enables IT departments to
delegate administrative control over site col-
lections, sites and document libraries to in-
dividual departments and teams. As a result,
teams can build and deploy their own solu-
tions with minimal involvement from IT,
while the IT department remains in control
of all the shared services and components,

Figure 1	 Data-gathering process that may be shared among departments

TechNet Magazine March 2008 51

50_DataGathering_UK.desFIN.indd 51 11/2/08 11:05:49

SharePoint

such as workflows, information-manage-
ment policies and backup procedures.

Centralising your data-gathering efforts
Enterprises often give teams departmental
application servers to accommodate individ-
ual information management needs. The IT
department is merely responsible for keep-
ing the hardware and operating system run-
ning, while the individual departments take
care of all aspects of their solutions. There
is little coordination between departments,
and information sharing is difficult.

Technical challenges to centralising data-
gathering efforts revolve mainly around
the security, performance, maintenance and
support of custom components hosted in a
shared environment. For instance, the effects
of a malfunctioning component are isolat-
ed if individual solutions are hosted on de-
partmental application servers. In a shared
environment, however, a malfunctioning
component can affect business processes on
a much larger scale. It follows that the IT de-
partment must establish strict policies re-
garding the deployment and maintenance of
custom components on centralised systems.

Hosting departmental SharePoint solu-
tions on a central server farm requires that
you deploy and maintain all the custom com-

ponents of these departmental solutions on
the central application servers. One solution
might rely on custom field types to extend
the solution’s UI with dropdown lists popu-
lated from back-end Web services. Another
solution might rely on Web Parts for the
same purpose while yet another uses custom
workflows – all of which are written in man-
aged code and deployed as Microsoft .NET
Framework assemblies.

Moving even a relatively small number of
SharePoint solutions to a central application
server farm can lead to difficult configura-
tion and support issues. If assemblies must
be deployed in the Global Assembly Cache
(GAC), security becomes an issue because
these assemblies run with full trust. Poorly
programmed components might open the
system to SQL injection, cross-site script-
ing or denial-of-service attacks. You need to
ensure that the components can sustain the
typical workload as well as peak demand and
long-running operations. You need to ensure
that the components don’t block other pro-
cesses, handling events synchronously, and
that the components perform reliable input
validation – so users cannot insert SQL state-
ments or scripts into columns used to update
a database or remote Web system.

In short, the goal is to emphasise secure
and scalable server configuration based on
standard product features. By relying on re-
usable, thoroughly tested solutions, you can
avoid the trap of creating numerous cus-
tom components. It makes sense to keep the
front end decentralised and the back end
centralised. The key is to integrate the com-
ponents in a loosely coupled way that pro-
motes reuse of existing solutions.

Splitting the business logic
So how do you build flexible data-gather-
ing solutions that can be configured on your
servers? The best strategy is to separate the
solution architecture into individual tiers
as shown in Figure 2: data storage, business
logic, and presentation or UI. These days, the
UI is typically browser-based while the busi-
ness logic resides on Web application servers.
These, in turn, access databases and non-rela-
tional data repositories.

Business logic often includes transaction
logic to ensure that transactions are applied Figure 2	 A typical enterprise solution built on a three-tier architecture

52 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

50_DataGathering_UK.desFIN.indd 52 11/2/08 11:05:50

atomically across database management sys-
tems. Business logic may also integrate mul-
tiple middle-tier services through HTTP,
message queuing, RPCs, and so on. The over-
all solution architecture, however, remains
essentially a three-tier model.

What Figure 2 does not illustrate is the
complexity of the business logic in an enter-
prise environment. It looks as if the applica-
tion server in this figure is merely focusing
on rendering a browser-based form and han-
dling the submitted data, but that represen-
tation does not take into account workflows,
compliance or information management re-
quirements. To address these requirements,
you need to split the business logic in two
– the presentation logic and the informa-
tion management logic. This allows you to
mix and match the middle-tier components
as needed without rebuilding components
from scratch for each solution.

Figure 3 shows this architecture. At the
core is the content or data, surrounded by
the information management logic, which
governs the content throughout its lifecycle.
The presentation logic interfaces with infor-
mation management logic to provide access
to the data via the user interface.

Gathering and processing XML
In service-oriented application (SOA) envi-
ronments, XML is the dominant standard
used to define and share data and data struc-
tures among components. And XML, there-
fore, is a good choice for interfacing between
presentation and information management
components.

Communication must move in two ways:
you’ll need to translate the XML into a
browser-readable document, as well as an
XML document generated by the form. Until
recently, building XML-based forms applica-
tions required extensive programming skills.
This was especially true when the resulting
XML data had to adhere to an industry sche-
ma to facilitate interorganisational informa-
tion exchange.

InfoPath 2007 makes XML-based forms
development much easier. A strong grasp of
XML details is certainly helpful, but forms
designers and power users need not be XML
wizards to build XML-based forms apps. The
forms designer simply imports an XML doc-

ument or XML schema into InfoPath and
then maps the individual attribute and el-
ement nodes from that data source to the
fields in the form. A forms designer can also
start with a Web service or a SQL Server® da-
tabase or from a blank template and build a
form from scratch while InfoPath automati-
cally creates the underlying schema and data
bindings in the background.

Standardising forms using InfoPath and
XML schemas has several advantages. If you
already have a well-defined XML schema,
forms designers and developers of work-
flows and information management compo-
nents can create solutions against the same
data structures. If a forms designer starts
from scratch, developers must wait for the
form to be finished in order to see how it
affects the underlying data structures. And
once the data structures are defined, future
solutions, such as new form templates, can
reuse existing workflows and information
management components if they rely on the
same data structures. And future workflows
and information management components
can work together with existing forms and
data. If you build your data-gathering solu-
tions based on established industry schemas,
the results become even more flexible. In
fact, these solutions will be compatible with
solutions built by other companies that use
the same schemas.

Figure 3	 Separating
presentation logic
from information
management logic

TechNet Magazine March 2008 53

50_DataGathering_UK.desFIN.indd 53 11/2/08 11:05:51

SharePoint

I created a simple DirectReports sche-
ma that associates employees with manag-
ers. Managers can use the resulting form to
evaluate their direct reports. You can find
the schema, the form and a readme.htm with
instructions to recreate the form in the
Direct Reports folder in the download avail-
able at technetmagazine.com/code08.aspx.
The form is basic, but it illustrates the gen-
eral concept.

A very important point here: I did not cre-
ate any validation logic in InfoPath, yet Info
Path still requires that user ID and e-mail
addresses be entered in a specific format (do-
main\account and recipient@domain.tld).
Otherwise, the resulting XML document is
not valid. This is because the XML schema
defines these formats. You can save the form
with invalid data but you can’t submit it, as
shown in Figure 4. (I’ve added a dummy sub-
mit rule to the form so you can test this with-
out actually submitting data to any location.)
InfoPath 2007 validation automatically en-
sures that the form is filled out completely
and without these sorts of errors.

The XML schema serves as the binding
contract between the presentation logic and
the information management logic. InfoPath
locks the schema so the forms designer can’t
intentionally change the data structures. This
is important because changing an established
XML schema can potentially break existing
enterprise solutions, such as workflow mod-
ules that you intend to use in combination
with the new forms template.

InfoPath provides an abundance of fea-
tures for building advanced presentation
logic into forms applications. You can con-
sume data from XML files, Web services,
SharePoint libraries and lists, databases and
so on to pull in meaningful default values.
You can change field values based on user se-
lection through rules, include validation log-
ic, add managed code for the most advanced
customisation requirements, and use Forms
Service to make the form template accessi-
ble over the Web. In any case, the data from
the form eventually reaches the information
management logic as an XML document that
conforms to a schema definition.

Working with XML or metadata
You might wonder whether you should ap-
ply information management logic directly
to the submitted XML document or instead
use a parser that extracts the required infor-
mation into metadata. SharePoint supports
both approaches. Developers are accustomed
to working directly with XML documents,
but metadata offers more flexibility.

To demonstrate this, I created a Web service
that parses an XML document passed in from
the Direct Reports form shown in Figure 4.
(The source code, setup files and a readme.
htm with step-by-step instructions are in
the XMLParsingWebService folder in the
accompanying download.) The Web service
reads the manager’s user ID from the XML
document, splits the user ID into domain and
user name parts, creates a message based on
these parts, and raises a generic exception to
return and display the processed information
in the form of a pseudo-error message in the
InfoPath form. This is an easy way to pop up
a dialog box in InfoPath after data has been
submitted. The Web service works great, but
if you change the underlying data source
(for example, if you rename the OrgPerson
element as Manager in DirectReports.xsd
and update the InfoPath form with the new
schema as outlined in the readme.htm file)
the Web service fails. But this shouldn’t be a
surprise. The XML document is now differ-
ent and the old XPath expression to access
the user-id element is invalid. The OrgPerson
and Manager schemas are almost identi-
cal, the InfoPath forms are identical and the
desired processing results are the same, but

Figure 4	 Validation errors prevent the user from submitting a form

54 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

50_DataGathering_UK.desFIN.indd 54 11/2/08 11:05:53

despite the differences being minimal,
you still need to deploy and maintain
duplicate Web services.

This is not a good approach if you want
to minimise the footprint of custom code
on your application servers. In contrast,
mapping the XML nodes to metadata fields
and performing the processing based on the
metadata allows you to use the same work-
flows and information management logic
for similar data structures even though the
XML schemas are different. You just need
to make sure that the child element maps to
the correct metadata field and that the data
format meets the processing requirements –
then you can reuse the existing code.

Mapping XML nodes to metadata fields is
similar to binding XML nodes to UI controls
in an InfoPath form, as shown in Figure 5.
In SharePoint, metadata fields correspond
to columns defined at the site or list level
and referenced in content type definitions.
Content types define the characteristics of
content items, such as metadata fields, work-
flows and forms. To keep the metadata fields
of a content type synchronised with the cor-
responding nodes in the associated XML doc-
ument, SharePoint relies on a built-in XML
parser that performs property promotion
and demotion. During property promotion,
the XML parser extracts node values from
an XML document into corresponding col-
umns on the document library. Property de-
motion refers to the reverse process in which
column values are taken from the document

library and written back into the document.
The most important point is that the XML
parser keeps the metadata fields and mapped
XML nodes synchronised.

When you use the SharePoint object mod-
el, your Web Parts, workflows and infor-
mation management logic can work with
metadata fields as well as the underlying
XML documents. Changing the value of a
mapped metadata field changes the node val-
ue in the XML document, and vice versa. Yet,
working directly with the XML document
tightly couples the business logic with the
XML schema. Mapped metadata fields, on
the other hand, increase the reusability of
code. Obviously, you need to decide which
approach is right for your environment, but
for the most part SharePoint solutions that
rely on metadata fields provide more flexibil-
ity and more opportunity for code reuse.

To illustrate how SharePoint associates
XML nodes with metadata fields, I included
a SharePoint feature in the companion mate-
rial to provision a custom document library
(see the OrgPersonContentType.xml file in
the OrgPersonLib folder in the accompany-
ing download). The OrgPerson content type
references four fields: UserID, FullName,
EMail and Direct_x0020_Reports. FullName
and EMail are built-in fields. UserID and
Direct_x0020_Reports are custom fields de-
fined in OrgPersonSiteColumns.xml.

The field definitions are fairly straight-
forward. It is possible to bind fields to XML
nodes directly in the field definitions, yet it is

Figure 5	 XML Schema mappings between InfoPath and SharePoint

TechNet Magazine March 2008 55

50_DataGathering_UK.desFIN.indd 55 11/2/08 11:05:55

SharePoint

also possible to overwrite this information in
the content types. I decided to use the latter
technique because this let me use the custom
fields in content types not related to XML doc-
uments as well as in content types that rely on
different XML structures. The OrgPerson con-
tent type binds the metadata fields to XML
nodes that match in their arrangement the
OrgPerson schema I discussed earlier. There
is also an AdditionalContentTypes.xml file
that defines more content types that bind the
same metadata fields to different XML nodes.
You can see the differences if you look at the
XPath expressions in the Node attributes.

Document libraries of the OrgPersonLib
type can store different types of XML doc-
uments while the node values are exposed
through the same library columns. This sim-
ple mapping technique also lets you reuse
workflows and information management
logic since the four content types (OrgPer
son, Manager, Supervisor and User) refer-
ence a common set of metadata fields.

Figure 6 shows you the FieldRef element
from the OrgPerson content type for Direct_
x0020_Reports, which maps the field to the
user-id nodes of direct reports according to
the XPath expression, /OrgPerson/direct-re-
port/user-id. Since the XML document can
include multiple direct report entries, it is
important that you specify an Aggregation
attribute. This defines how the XML parser

will handle the returned collection of values.
If you omit this attribute, the XML parser
extracts only the first node value. Supported
aggregation values are sum, count, average,
min, max, merge, plain text, first, and last.

All of the sample content types use the
standard upload.aspx page as the Document
Template so that you can upload XML files
into the document library when you click on
the New button in the SharePoint UI. As long
as you upload files with an .xml file-name
extension, SharePoint will automatically
invoke the built-in XML parser (one excep-
tion is WordProcessingML files, for which
SharePoint invokes a WordProcessingML
parser). The XML parser examines the up-
loaded .xml file to determine the associat-
ed content type. This is so it can extract the
node values from the locations specified in
the field definitions and perform proper-
ty promotion. (You can verify this process
when you upload the OrgPerson.xml file in-
cluded in the OrgPersonLib\XMLFiles fold-
er.) The structure of this XML document
matches the XPath expressions specified
in the OrgPerson content type definition.
Accordingly, SharePoint extracts the data
from the .xml file, writes the data into the
corresponding library columns and displays
the data in the EditForm.aspx page so you
can verify and update the document proper-
ties that are not marked as read-only. Figure
7 shows the EditForm.aspx form with the
data extracted from OrgPerson.xml.

If you change the User ID, Full Name or E-
Mail value in EditForm.aspx, SharePoint per-
forms property demotion to change the node
values in the underlying XML document.
However, SharePoint does not enforce XML
Schema restrictions unless you implement the
required logic into the form yourself.

SharePoint does not run the presentation
logic of a forms application. For example,
when you change the User ID, SharePoint
does not validate that the new value con-
forms to NetBIOS conventions and does
not automatically update the Full Name
and E-Mail fields to match the new selec-
tion. Thus, you should mark the correspond-
ing column in the content type definition as
read-only if changing an individual field may
cause inconsistencies. This forces the user to
use the forms application, such as InfoPath,

Figure 6	 Metadata
field mapped to an
XPath expression

	InfoPath 2007 Team Blog
	 blogs.msdn.com/infopath

	W3C XML Schema Specifications and Development
	 w3.org/XML/Schema#dev

	Introduction to XML Schemas
	 msdn2.microsoft.com/efc70bx3

	Workflows in Office SharePoint Server 2007
	 msdn2.microsoft.com/ms549489

	InfoPath 2007 Forms Services
	 msdn2.microsoft.com/ms540731

Additional online resources

56 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

50_DataGathering_UK.desFIN.indd 56 11/2/08 11:05:56

to update the data. And the XML parser
will promote any changes from the XML
document to the corresponding metadata
fields in SharePoint.

In the OrgPersonLib sample, you can up-
load any of the .xml files from the OrgPer
sonLib\XMLFiles folder. The .xml files use
very different data structures, but SharePoint
recognises the content types and promotes
the correct node values into the site columns.
This is because I used a processing instruc-
tion in the XML files to associate the XML
documents with their corresponding con-
tent types. The OrgPerson.xml file, however,
doesn’t include this information, but this is
not a problem. If SharePoint cannot associ-
ate an XML doc with a content type through
a processing instruction or the document
template, SharePoint uses the default con-
tent type. In the OrgPersonLib case, this hap-
pens to be the OrgPerson content type and
therefore the XML doc is parsed correctly.

Figure 8 shows how you can associate
an XML doc explicitly with a content type.
The MicrosoftWindowsSharePointServices
processing instruction defines the Content
TypeID as 0x010100668E393E4F0EFF4294
DBD202D5D8321D. This happens to be the
ID of the User content type, as defined in Ad
ditionalContentTypes.xml.

The XML parser processes the Microsoft
WindowsSharePointServices processing in-
struction and writes the ContentTypeID
value into the ContentType metadata field.
All SharePoint content types share this meta-
data field because it is defined at the root lev-
el in the System content type. If you open
the fieldswss.xml file on a SharePoint server
(located in %CommonProgramFiles%\Micro
soft Shared\Web Server Extensions\12\Tem
plate\Features\Fields folder) and search for
MicrosoftWindowsSharePointServices, you
can see how SharePoint associates the pro-
cessing instruction with the ContentType
field. The PITarget attribute points to Micro
softWindowsSharePointServices (this is the

Figure 7	 EditForm.aspx
form with extracted data

Figure 8	 Processing instructions and XML data of the
User.xml sample file

TechNet Magazine March 2008 57

50_DataGathering_UK.desFIN.indd 57 11/2/08 11:05:58

SharePoint

processing instruction) and the PIAttribute
points to ContentTypeID (which contains
the ID of the User content type).

Content type associations in InfoPath
The technicalities of XML parsing and
content type associations are intimidating
for many forms designers, but InfoPath
2007 takes care of all the nitty-gritty de-
tails. The readme.htm file that accompa-
nies the OrgPersonLib sample includes
instructions to publish the Direct Reports
form template in SharePoint and create a
content type that binds yet again to the
same metadata fields (UserID, FullName,
EMail, and Direct_x0020_Reports). You
can easily add the new content type to
the OrgPersonLib document library in the
SharePoint UI. But the new content type
also points to the InfoPath form template
as the document template to invoke the
forms application when updating exist-
ing XML documents. Figure 9 illustrates
how the InfoPath Publishing Wizard sim-
plifies property mapping between XML
node values and SharePoint site columns.
And, again, if you associate the node val-
ues with existing site columns, you can re-
use existing SharePoint components.

Wrapping up
With technologies available in Office, enter-
prise architects can build data-gathering so-
lutions that readily promote code reuse and
information exchange. InfoPath 2007 allows
departments to create solutions that can pull
information from various sources, and the
data can then be submitted to various systems,
such as SharePoint. SharePoint also provides
developers with a comprehensive set of Web
services and interfaces to build workflows
and information management components.
By hosting these components on centralised
SharePoint servers, departments then have the
infrastructure they need to build their individ-
ual applications.

Meanwhile, individual departments can
create their data-gathering solutions fast-
er. Compliance regulations and other global
business requirements can be addressed at a
cross-departmental level, and the maintain-
ability and reliability of the IT environment
increases with the use of fewer custom com-
ponents on application servers.	 ■

For more information about SharePoint please
visit the SharePoint Tech Centre at:
http://technet.microsoft.com/en-gb/office/
sharepointserver

Figure 9 Property mapping in InfoPath 2007

Keith Deshaies is a
freelance technical writer
and an IT analyst for a
large telecommunications
company. He specialises
in Microsoft Office and
SharePoint technolo-
gies and is a member of
the Society for Technical
Communications.

58 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

50_DataGathering_UK.desFIN.indd 58 11/2/08 11:05:59

