
40 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

At a glance:
Creating partitioned tables
Adding and merging
partitions
Creating and managing
partitioned indexes

SQL Server

In the past, database administrators managing tables containing
millions of rows of data were forced to create multiple tables.
Once those tables were partitioned, the administrator had to tie

Noah Gomez

Simplify database
maintenance with
table partitions

the tables back together during the execution of many of
their queries. Tying partitions together involved creating a
partitioned view or a wrapper stored procedure that figured
out where the data lived and executed another stored proce-
dure to hit only the partitions needed to return the dataset.

While these methods worked, they were burdensome.
The administration of multiple tables and their indexes, as
well as the methods used for tying the tables back together
often caused administration and maintenance issues. In ad-
dition, creating multiple tables to partition data led to a de-
gree of inflexibility, as the stored procedures, maintenance
jobs, Data Transformation Services (DTS) jobs, application
code, and other processes had to understand the nature
of the partitioning. So to allow you to add or drop these

quasi partitions without changing your code, these ele-
ments were typically created in a non-dynamic manner, and
as a result they were inefficient.

The Enterprise and Developer editions of SQL Server
2005 let you partition large amounts of data contained in a
single table into multiple smaller partitions that can be man-
aged and maintained more effectively. The ability to create
data segments that are accessed through a single point-of-
entry reduces many of the administration issues that came
with the old way of doing things. Using a single point of
entry (table name or index name) hides the multiple data
segments from the application code and allows the admin-
istrator or developer to change the partitions as necessary
without having to adjust the code base.

40_47_SimplifyDB_desfin.indd 40 8/6/07 11:19:02

TechNet Magazine July 2007 41

In short, you can create multiple partitions, move those
partitions around, drop old partitions, and even change the
way data is partitioned without ever having to adjust the
code in your application. Your application code simply con-
tinues to call the same base table or index name. Meanwhile,
you can reduce the amount of data that individual indexes
contain, in turn decreasing maintenance times for those in-
dexes, and you can increase data load speed by loading into
empty partitions.

Technically, every SQL Server 2005 table is partitioned
– every table has at least one partition. What SQL Server

2005 does is allow database administrators to create addi-
tional partitions on each table. Table and index partitions
are hard-defined, row-level partitions (partitioning by col-
umns is not allowed) that allow a single point of entry (table
name or index name) without the application code needing
to know the number of partitions behind the point of entry.
Partitions can exist on the base table as well as the indexes
associated with the table.

Creating partitioned tables
You use partition functions and partition schemes to create
a table that has the ability to grow beyond the default sin-
gle partition. These objects are what allow you to divide the
data into specific segments and control where those data
segments are located in your storage design. You can, for ex-
ample, spread data out over multiple drive arrays based on
the age of the data or using other common differentiators.
Note that a table can be partitioned based on one column of
the table and each partition must contain data that cannot
be placed into the other partitions.
Partition functions When partitioning a table, the first de-
cision is how you want to divide the data into different seg-
ments. A partition function is used to map the individual
rows of data into the different partitions. Those individu-
al rows of data can be mapped by any type of column ex-
cept for text, ntext, image, xml, timestamp, varchar(max),
nvarchar(max), varbinary(max), alias data types, or common

--Place all partitions into the PRIMARY filegroup
CREATE PARTITION SCHEME Primary_Left_Scheme
AS PARTITION Left_Partition
--Partition must currently exist in database
 ALL TO ([PRIMARY])

--Place all partitions into the different filegroups
CREATE PARTITION SCHEME Different_Left_Scheme
AS PARTITION Left_Partition
--Partition must currently exist in database
 TO (Filegroup1, Filegroup2, Filegroup3, Filegroup4)
--Filegroups must currently exist in database

--Place multiple partitions into the different filegroups
CREATE PARTITION SCHEME Multiple_Left_Scheme
AS PARTITION Left_Partition
--Partition must currently exist in database
 TO (Filegroup1, Filegroup2, Filegroup1, Filegroup2)
--Filegroups must currently exist in database

Figure 1 Assigning filegroups to a partition scheme

--Prepare database
IF OBJECT_ID(‘Partitioned_Table’) IS NOT NULL
DROP TABLE Partitioned_Table
GO

IF EXISTS(SELECT [name] FROM sys.partition_schemes
WHERE [name] = ‘Primary_Left_Scheme’)
DROP PARTITION SCHEME Primary_Left_Scheme
GO

IF EXISTS(SELECT [name] FROM sys.partition_functions
WHERE [name] = ‘Left_Partition’)
DROP PARTITION FUNCTION Left_Partition
GO

--Create partitioned table
CREATE PARTITION FUNCTION Left_Partition (int) AS RANGE LEFT
FOR VALUES (1,10,100)

--Place all partitions into the PRIMARY filegroup
CREATE PARTITION SCHEME Primary_Left_Scheme
AS PARTITION Left_Partition
 ALL TO ([PRIMARY])

CREATE TABLE Partitioned_Table
(
col1 INT
,col2 VARCHAR(15)
) ON Primary_Left_Scheme (col1)

--Determine where values will be placed (this is not required)
--You should try to do this before executing the code
SELECT $PARTITION.Left_Partition (1)
SELECT $PARTITION.Left_Partition (2)
SELECT $PARTITION.Left_Partition (3)

SELECT $PARTITION.Left_Partition (4)
SELECT $PARTITION.Left_Partition (10)
SELECT $PARTITION.Left_Partition (11)
SELECT $PARTITION.Left_Partition (12)
SELECT $PARTITION.Left_Partition (13)
SELECT $PARTITION.Left_Partition (14)
SELECT $PARTITION.Left_Partition (100)
SELECT $PARTITION.Left_Partition (101)
SELECT $PARTITION.Left_Partition (102)
SELECT $PARTITION.Left_Partition (103)
SELECT $PARTITION.Left_Partition (104)

--Insert data into partitioned table
INSERT INTO Partitioned_Table VALUES (1,’Description’)
INSERT INTO Partitioned_Table VALUES (2,’Description’)
INSERT INTO Partitioned_Table VALUES (3,’Description’)
INSERT INTO Partitioned_Table VALUES (4,’Description’)
INSERT INTO Partitioned_Table VALUES (10,’Description’)
INSERT INTO Partitioned_Table VALUES (11,’Description’)
INSERT INTO Partitioned_Table VALUES (12,’Description’)
INSERT INTO Partitioned_Table VALUES (13,’Description’)
INSERT INTO Partitioned_Table VALUES (14,’Description’)
INSERT INTO Partitioned_Table VALUES (100,’Description’)
INSERT INTO Partitioned_Table VALUES (101,’Description’)
INSERT INTO Partitioned_Table VALUES (102,’Description’)
INSERT INTO Partitioned_Table VALUES (103,’Description’)
INSERT INTO Partitioned_Table VALUES (104,’Description’)

--View the distribution of data in the partitions
SELECT ps.partition_number
,ps.row_count
FROM sys.dm_db_partition_stats ps
INNER JOIN sys.partitions p
ON ps.partition_id = p.partition_id
AND p.[object_id] = OBJECT_ID(‘Partitioned_Table’)

Figure 2 Placing rows of data and viewing the distribution

40_47_SimplifyDB_desfin.indd 41 8/6/07 11:19:02

SQL Server

42 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

language runtime (CLR) user-defined data types. However,
the partitioning function must be able to place a row of
data into only one table partition – it cannot allow a row of
data to belong in multiple partitions at the same time.

In order to partition a table, you must create the partition-
ing column in the targeted table. This partitioning column
can exist in the table schema when the table is first created
or you can alter the table and add the column at a later date.
The column can accept NULL values but all rows contain-

ing NULL values will by default be placed in the left-most
partition of the table. You can avoid this by specifying that
NULL values be placed in the right-most partition of the
table when you create the partitioning function. The use of
the left or right partition will be an important design deci-
sion as you modify your partitioning schema and add more
partitions or delete existing partitions.

When creating a partitioning function, you can choose
a LEFT or RIGHT partition function. The difference be-
tween LEFT and RIGHT partitions is where the boundary
values will be placed in the partitioning scheme. LEFT par-
titions (which is the default) include the boundary value in
the partition while RIGHT partitions place the boundary
value in the next partition.

To understand this concept a little better, let’s look at sim-
ple LEFT and RIGHT partitions:

CREATE PARTITION FUNCTION Left_Partition (int) AS RANGE LEFT
FOR VALUES (1,10,100)

CREATE PARTITION FUNCTION Right_Partition (int) AS RANGE RIGHT
FOR VALUES (1,10,100)

In the first function (Left_Partition), the values 1, 10 and
100 are placed in the first, second and third partitions, re-
spectively. In the second function (Right_Partition), the val-
ues are placed in the second, third and fourth partitions.

--Determine where values live after new partition
SELECT $PARTITION.Left_Partition (5) --should return a value of 2
SELECT $PARTITION.Left_Partition (1) --should return a value of 1
SELECT $PARTITION.Left_Partition (10) --should return a value of 2

--Add new filegroups to the partitioning scheme
ALTER PARTITION SCHEME Primary_Left_Scheme
NEXT USED [PRIMARY]

--Create new partition
ALTER PARTITION FUNCTION Left_Partition ()
SPLIT RANGE(5)

--Determine where values live after new partition
SELECT $PARTITION.Left_Partition (5) --should return a value of 2
SELECT $PARTITION.Left_Partition (1) --should return a value of 1
SELECT $PARTITION.Left_Partition (10) --should return a value of 3

Figure 3 Adding a partition to the left side of the function

--Prepare database
IF OBJECT_ID(‘multiple_partition’) IS NOT NULL
DROP TABLE multiple_partition
GO

IF EXISTS(SELECT [name] FROM sys.partition_schemes
WHERE [name] = ‘Primary_Left_Scheme’)
DROP PARTITION SCHEME Primary_Left_Scheme
GO

IF EXISTS(SELECT [name] FROM sys.partition_functions
WHERE [name] = ‘Left_Partition’)
DROP PARTITION FUNCTION Left_Partition
GO

--Create partitioned table
CREATE PARTITION FUNCTION Left_Partition (int) AS RANGE LEFT
FOR VALUES (1,10,100)

--Place all partitions into the PRIMARY filegroup
CREATE PARTITION SCHEME Primary_Left_Scheme
AS PARTITION Left_Partition
--Partition must currently exist in database
 ALL TO ([PRIMARY])

CREATE TABLE multiple_partition
(
col1 INT PRIMARY KEY CLUSTERED
,col2 VARCHAR(15)
) ON Primary_Left_Scheme (col1)

INSERT INTO multiple_partition VALUES (1,’Description’)
INSERT INTO multiple_partition VALUES (2,’Description’)
INSERT INTO multiple_partition VALUES (3,’Description’)
INSERT INTO multiple_partition VALUES (4,’Description’)
INSERT INTO multiple_partition VALUES (10,’Description’)
INSERT INTO multiple_partition VALUES (11,’Description’)
INSERT INTO multiple_partition VALUES (12,’Description’)
INSERT INTO multiple_partition VALUES (13,’Description’)

INSERT INTO multiple_partition VALUES (14,’Description’)
INSERT INTO multiple_partition VALUES (100,’Description’)
INSERT INTO multiple_partition VALUES (101,’Description’)
INSERT INTO multiple_partition VALUES (102,’Description’)
INSERT INTO multiple_partition VALUES (103,’Description’)
INSERT INTO multiple_partition VALUES (104,’Description’)

--Verify partitions
SELECT OBJECT_NAME(ps.[object_id])
,ps.partition_number
,ps.row_count
FROM sys.dm_db_partition_stats ps
INNER JOIN sys.partitions p
ON ps.partition_id = p.partition_id
AND p.[object_id] = OBJECT_ID(‘multiple_partition’)

--Check where data would be placed
SELECT $PARTITION.Left_Partition (1)
SELECT $PARTITION.Left_Partition (10)
SELECT $PARTITION.Left_Partition (100)
SELECT $PARTITION.Left_Partition (101)

--Merge two partitions
ALTER PARTITION FUNCTION Left_Partition()
MERGE RANGE (10)

--Verify partitions
SELECT OBJECT_NAME(ps.[object_id])
,ps.partition_number
,ps.row_count
FROM sys.dm_db_partition_stats ps
INNER JOIN sys.partitions p
ON ps.partition_id = p.partition_id
AND p.[object_id] = OBJECT_ID(‘multiple_partition’)

--Check where data would be placed
SELECT $PARTITION.Left_Partition (1)
SELECT $PARTITION.Left_Partition (10)
SELECT $PARTITION.Left_Partition (100)
SELECT $PARTITION.Left_Partition (101)

Figure 4 Moving data from one partition into another

40_47_SimplifyDB_desfin.indd 42 8/6/07 11:19:03

TechNet Magazine July 2007 43

When creating a partitioned table, it’s important to get
the partitions as even as possible. This will help you to un-
derstand the space needed for a partition. The use of LEFT
and RIGHT will determine where data is placed and this, in
turn, will determine the size of the partition and the size of
any indexes created on that partition.

You can determine the partition number in which a data
value will be placed by using the $PARTITION function, as
shown here:

SELECT $PARTITION.Left_Partition (10)
SELECT $PARTITION.Right_Partition (10)

In the first SELECT statement, the result will be 2. The sec-
ond SELECT statement will return 3.
Partition schemes After you create the function and de-
cide how your data will be divided, you must decide where
the individual partitions will be created on your disk sub-
system. You use partition schemes to create this disk layout.
Partition schemes manage the disk storage of individual par-
titions by utilising filegroups to place each partition onto a
location on the disk subsystem. You can configure partition
schemes to have all partitions placed in a single filegroup, all

partitions placed into different filegroups, or multiple par-
titions share filegroups. This latter method allows the data-
base administrator a large amount of flexibility in spreading
out the disk I/O.

Figure 1 shows some of the ways in which you can assign
a filegroup or multiple filegroups to a partition scheme. You
should be aware that the filegroups used by your partition
scheme must already exist in the database before you create
your partitioning scheme.

If you create the sample partition functions as shown
in Figure 1 and utilise the partition scheme to create a ta-
ble, you can then determine where individual data rows are
placed in your newly partitioned tables. Then you can view
the distribution of those rows of data after they are inserted
into your partitioned table. The code for doing all this will
look something like that shown in Figure 2.

Modifying partitioned tables
Despite careful upfront planning, sometimes you’ll need
to adjust your partitioned tables after they’ve been cre-
ated and populated. Your partition scheme may work as

--Prepare database
IF OBJECT_ID(‘multiple_partition’) IS NOT NULL
DROP TABLE multiple_partition
GO

IF OBJECT_ID(‘single_partition’) IS NOT NULL
DROP TABLE single_partition
GO

IF EXISTS(SELECT [name] FROM sys.partition_schemes
WHERE [name] = ‘Primary_Left_Scheme’)
DROP PARTITION SCHEME Primary_Left_Scheme
GO

IF EXISTS(SELECT [name] FROM sys.partition_functions
WHERE [name] = ‘Left_Partition’)
DROP PARTITION FUNCTION Left_Partition
GO

--Create single partition table
CREATE TABLE single_partition
(
col1 INT PRIMARY KEY CLUSTERED
,col2 VARCHAR(15)
)

--Table must have a CHECK Constraint
ALTER TABLE single_partition
WITH CHECK
ADD CONSTRAINT CK_single_partition
 CHECK (col1 > 100)

INSERT INTO single_partition VALUES (101,’Description’)
INSERT INTO single_partition VALUES (102,’Description’)
INSERT INTO single_partition VALUES (103,’Description’)
INSERT INTO single_partition VALUES (104,’Description’)

--Create partitioned table
CREATE PARTITION FUNCTION Left_Partition (int) AS RANGE LEFT
FOR VALUES (1,10,100)

--Place all partitions into the PRIMARY filegroup
CREATE PARTITION SCHEME Primary_Left_Scheme

AS PARTITION Left_Partition
--Partition must currently exist in database
 ALL TO ([PRIMARY])

CREATE TABLE multiple_partition
(
col1 INT PRIMARY KEY CLUSTERED
,col2 VARCHAR(15)
) ON Primary_Left_Scheme (col1)

INSERT INTO multiple_partition VALUES (1,’Description’)
INSERT INTO multiple_partition VALUES (2,’Description’)
INSERT INTO multiple_partition VALUES (3,’Description’)
INSERT INTO multiple_partition VALUES (4,’Description’)
INSERT INTO multiple_partition VALUES (10,’Description’)
INSERT INTO multiple_partition VALUES (11,’Description’)
INSERT INTO multiple_partition VALUES (12,’Description’)
INSERT INTO multiple_partition VALUES (13,’Description’)
INSERT INTO multiple_partition VALUES (14,’Description’)
INSERT INTO multiple_partition VALUES (100,’Description’)

--Verify partitions
SELECT OBJECT_NAME(ps.[object_id])
,ps.partition_number
,ps.row_count
FROM sys.dm_db_partition_stats ps
INNER JOIN sys.partitions p
ON ps.partition_id = p.partition_id
AND p.[object_id] IN (OBJECT_ID(‘multiple_partition’), OBJECT_
 ID(‘single_partition’))

--Move the single table into the partitioned table
ALTER TABLE single_partition SWITCH TO multiple_partition PARTITION 4

--Verify partitions
SELECT OBJECT_NAME(ps.[object_id])
,ps.partition_number
,ps.row_count
FROM sys.dm_db_partition_stats ps
INNER JOIN sys.partitions p
ON ps.partition_id = p.partition_id
AND p.[object_id] IN (OBJECT_ID(‘multiple_partition’), OBJECT_
ID(‘single_partition’))

Figure 5 Moving an entire table into an existing table

40_47_SimplifyDB_desfin.indd 43 8/6/07 11:19:03

SQL Server

44 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

SELECT $PARTITION.Left_Partition (501)
--should return a value of 4

--Create new partition
ALTER PARTITION FUNCTION Left_Partition ()
SPLIT RANGE(500)

--Determine where values live after new partition
SELECT $PARTITION.Left_Partition (501)
--should return a value of 5

The ability to add partitions offers great flexibility.
Figure 3 shows how you can add a partition to the left side
of the function. In this case, you need to tell the partition-
ing scheme where to put the new partition since you have
used up all of your filegroups created when you first built
the partitioning scheme. Even though you are using the
PRIMARY filegroup for all your partitions, you must still
tell the partitioning scheme to reuse the PRIMARY file-
group for the new partition.

intended, but you may, for example, need to add new par-
titions as new data is accumulated, or perhaps you may
need to drop large amounts of partitioned data at one time.
Fortunately, partitioned tables and the underlying parti-
tioning structures allow for changes to be made after the
table has gone live and been filled with data.
Add partitions Many partitioning plans include the abil-
ity to add a new partition at a future time. This point in
time can be a particular date or it can be dependent on a
value in an incremental identity column. However, if you
haven’t planned for this up front, you can still come in at
a later date and add new partitions to a partitioned table.
Consider the table created in Figure 2. You can add a new
partition to this table to contain values greater than 500,
like this:

--Determine where values live before new partition

--Prepare database
IF OBJECT_ID(‘active_data’) IS NOT NULL
DROP TABLE active_data
GO

IF OBJECT_ID(‘archive_data’) IS NOT NULL
DROP TABLE archive_data
GO

IF EXISTS(SELECT [name] FROM sys.partition_schemes
WHERE [name] = ‘Active_Scheme’)
DROP PARTITION SCHEME Active_Scheme
GO

IF EXISTS(SELECT [name] FROM sys.partition_functions
WHERE [name] = ‘Active_Partition’)
DROP PARTITION FUNCTION Active_Partition
GO

IF EXISTS(SELECT [name] FROM sys.partition_schemes
WHERE [name] = ‘Archive_Scheme’)
DROP PARTITION SCHEME Archive_Scheme
GO

IF EXISTS(SELECT [name] FROM sys.partition_functions
WHERE [name] = ‘Archive_Partition’)
DROP PARTITION FUNCTION Archive_Partition
GO

--Create active function
CREATE PARTITION FUNCTION Active_Partition (int) AS RANGE LEFT
FOR VALUES (1,10,100)

--Create archive function
CREATE PARTITION FUNCTION Archive_Partition (int) AS RANGE LEFT
FOR VALUES (100,200,300)

--Place all partitions into the PRIMARY filegroup
CREATE PARTITION SCHEME Active_Scheme
AS PARTITION Active_Partition
--Partition must currently exist in database
 ALL TO ([PRIMARY])

--Place all partitions into the PRIMARY filegroup
CREATE PARTITION SCHEME Archive_Scheme
AS PARTITION Archive_Partition
--Partition must currently exist in database
 ALL TO ([PRIMARY])

CREATE TABLE active_data

(
col1 INT PRIMARY KEY CLUSTERED
,col2 VARCHAR(15)
) ON Active_Scheme (col1)

CREATE TABLE archive_data
(
col1 INT PRIMARY KEY CLUSTERED
,col2 VARCHAR(15)
) ON Archive_Scheme (col1)

INSERT INTO active_data VALUES (1,’Description’)
INSERT INTO active_data VALUES (2,’Description’)
INSERT INTO active_data VALUES (3,’Description’)
INSERT INTO active_data VALUES (4,’Description’)
INSERT INTO active_data VALUES (10,’Description’)
INSERT INTO active_data VALUES (11,’Description’)
INSERT INTO active_data VALUES (12,’Description’)
INSERT INTO active_data VALUES (13,’Description’)
INSERT INTO active_data VALUES (14,’Description’)
INSERT INTO active_data VALUES (100,’Description’)

INSERT INTO archive_data VALUES (200,’Description’)
INSERT INTO archive_data VALUES (300,’Description’)
INSERT INTO archive_data VALUES (400,’Description’)

--Verify partitions
SELECT OBJECT_NAME(ps.[object_id])
,ps.partition_number
,ps.row_count
FROM sys.dm_db_partition_stats ps
INNER JOIN sys.partitions p
ON ps.partition_id = p.partition_id
AND p.[object_id] IN (OBJECT_ID(‘active_data’),OBJECT_ID(‘archive_
 data’))

--Switch ownership of partition to another table
ALTER TABLE active_data SWITCH PARTITION 3 TO archive_data PARTITION 1

--Verify partitions
SELECT OBJECT_NAME(ps.[object_id])
,ps.partition_number
,ps.row_count
FROM sys.dm_db_partition_stats ps
INNER JOIN sys.partitions p
ON ps.partition_id = p.partition_id
AND p.[object_id] IN (OBJECT_ID(‘active_data’),OBJECT_ID(‘archive_
 data’))

Figure 6 Moving older data to archived tables

40_47_SimplifyDB_desfin.indd 44 8/6/07 11:19:03

TechNet Magazine July 2007 45

Merge two partitions SQL Server allows you to drop single
partitions from a table while keeping the data. This can be
used to merge older active data into archived data or to re-
duce the number of partitions you have, easing your admin-
istration of the partitioned table. You can also use this to
merge partitions, moving data from one filegroup to anoth-
er to free up disk space on certain drive arrays. The code in
Figure 4 shows how you can move data from one partition
into another partition on the same filegroup.
Move a single partition table into a partitioned table
During load routines, large amounts of data often must be
loaded into the database and then modified or aggregated
before it is moved into the actual data table. SQL Server
2005 partitioning lets you move a single partition table into
a table with multiple partitions. This means you can load
data into a single load table, modify that data and then move
the entire table into an existing table without the overhead
of moving each individual row of data. This layer of parti-
tioning does not involve altering the underlying partition-
ing structures. It involves modifying the partitioned table.
The code in Figure 5 shows how you can achieve this.

Move a partition from one table to another A common
administrative task is to move older data into separate ar-
chive tables. The archiving process usually involves a series
of statements that can create additional resource usage in
your transaction logs. Switching the ownership of a parti-
tion from one table to another, however, is a simple way to
archive large amounts of data without the transaction log
overhead. This feature allows the database administrator to
move segments of older data from their active tables to ar-
chived tables. But since the data is not actually moved, the
amount of time it takes can be dramatically less than when
moving individual rows of data. Figure 6 shows how you
can do this.
Use a single partition to create a new table You can move
a single partition from an existing partitioned table into an
empty non-partitioned table. By doing so, a database admin-
istrator can perform index maintenance on the single par-
tition or easily drop large amounts of data without having
that delete process logged. The sample in Figure 7 shows
how to move a partition into an empty table and then use
that new table to drop the data.

--Prepare database
IF OBJECT_ID(‘active_data’) IS NOT NULL
DROP TABLE active_data
GO

IF OBJECT_ID(‘archive_data’) IS NOT NULL
DROP TABLE archive_data
GO

IF EXISTS(SELECT [name] FROM sys.partition_schemes
WHERE [name] = ‘Active_Scheme’)
DROP PARTITION SCHEME Active_Scheme
GO

IF EXISTS(SELECT [name] FROM sys.partition_functions
WHERE [name] = ‘Active_Partition’)
DROP PARTITION FUNCTION Active_Partition
GO

--Create active function
CREATE PARTITION FUNCTION Active_Partition (int) AS RANGE LEFT
FOR VALUES (1,10,100)

--Place all partitions into the PRIMARY filegroup
CREATE PARTITION SCHEME Active_Scheme
AS PARTITION Active_Partition
--Partition must currently exist in database
 ALL TO ([PRIMARY])

CREATE TABLE active_data
(
col1 INT PRIMARY KEY CLUSTERED
,col2 VARCHAR(15)
) ON Active_Scheme (col1)

CREATE TABLE archive_data
(
col1 INT PRIMARY KEY CLUSTERED
,col2 VARCHAR(15)
)

INSERT INTO active_data VALUES (1,’Description’)
INSERT INTO active_data VALUES (2,’Description’)
INSERT INTO active_data VALUES (3,’Description’)

INSERT INTO active_data VALUES (4,’Description’)
INSERT INTO active_data VALUES (10,’Description’)
INSERT INTO active_data VALUES (11,’Description’)
INSERT INTO active_data VALUES (12,’Description’)
INSERT INTO active_data VALUES (13,’Description’)
INSERT INTO active_data VALUES (14,’Description’)
INSERT INTO active_data VALUES (100,’Description’)

--Verify partitions
SELECT OBJECT_NAME(ps.[object_id])
,ps.partition_number
,ps.row_count
FROM sys.dm_db_partition_stats ps
INNER JOIN sys.partitions p
ON ps.partition_id = p.partition_id
AND p.[object_id] IN (OBJECT_ID(‘active_data’),OBJECT_ID(‘archive_
 data’))

--Switch ownership of partition to another table
ALTER TABLE active_data SWITCH PARTITION 3 TO archive_data

--Verify partitions
SELECT OBJECT_NAME(ps.[object_id])
,ps.partition_number
,ps.row_count
FROM sys.dm_db_partition_stats ps
INNER JOIN sys.partitions p
ON ps.partition_id = p.partition_id
AND p.[object_id] IN (OBJECT_ID(‘active_data’),OBJECT_ID(‘archive_
 data’))

--Drop all archive data without logging
DROP TABLE archive_data
GO

--Verify partitions
SELECT OBJECT_NAME(ps.[object_id])
,ps.partition_number
,ps.row_count
FROM sys.dm_db_partition_stats ps
INNER JOIN sys.partitions p
ON ps.partition_id = p.partition_id
AND p.[object_id] IN (OBJECT_ID(‘active_data’),OBJECT_ID(‘archive_
 data’))

Figure 7 Moving and dropping data

40_47_SimplifyDB_desfin.indd 45 8/6/07 11:19:03

SQL Server

46 To get your FREE copy of TechNet Magazine subscribe at: www.microsoft.com/uk/technetmagazine

Partitioned indexes
With the ability to partition the data of a table comes the
ability to create partitioned indexes. This allows the data-
base administrator to design the index structure based on
the divided data rather than on the data of the entire table.

Creating partitioned indexes results in individual B-trees
on the partitioned indexes. The division of the indexes has
the effect of creating smaller indexes that are more easily
maintained by the storage engine during data modification,
addition, and deletion. These smaller indexes can also be
maintained individually by the database administrator, al-
lowing for better index maintenance on large datasets.
Creating partitioned indexes When creating partitioned
indexes, you can either create aligned indexes or non-aligned
indexes. For aligned indexes, you create the index with a di-
rect relationship to the partitioned data. (For non-aligned
indexes, you choose a different partitioning schema.)

Aligned is the preferred method and will be done

automatically if you create the partition table and then cre-
ate the indexes without specifying a different partitioning
scheme. Using aligned indexes gives you the flexibility to
create additional partitions on the table and the ability to
switch the ownership of a partition to another table. These
capabilities are often the reason database administrators
create partitioned tables in the first place, and simply using
the partitioning schema of the table for your indexes will
likely achieve your partitioning goals.

You can create indexes against tables where the data
in the index is not aligned to the data in the table. If the
data is in a partitioned table, this will allow you to join the
data in different ways (partitioned data can be efficiently
joined with other partitioned data by the query optimiser).
Alternatively, you can do this with a non-partitioned table,
allowing you to create a partitioned index (against the sin-
gle partition table) so you can ease index maintenance.

The code in Figure 8 will create a partitioned, non-clus-
tered index on a partitioned table. The non-clustered index
will be aligned with the table and will utilise the partition-
ing column of the table as the non-clustered index key.

The code in Figure 9 will create a non-aligned, non-clus-
tered index on a partitioned table. This non-clustered index
will use different columns for its index key, which can be
used in collated joins against other partitioned tables.
Maintain partitioned indexes In the past, performing in-
dex maintenance against large tables containing millions
or even billions of rows of data often took longer than da-
tabase administrators had time for. This maintenance was

--Prepare database
IF OBJECT_ID(‘multiple_partition’) IS NOT NULL
DROP TABLE multiple_partition
GO

IF EXISTS(SELECT [name] FROM sys.partition_schemes
WHERE [name] = ‘Primary_Left_Scheme’)
DROP PARTITION SCHEME Primary_Left_Scheme
GO

IF EXISTS(SELECT [name] FROM sys.partition_functions
WHERE [name] = ‘Left_Partition’)
DROP PARTITION FUNCTION Left_Partition
GO

--Create partitioned table
CREATE PARTITION FUNCTION Left_Partition (int) AS RANGE LEFT
FOR VALUES (1,10,100)

--Place all partitions into the PRIMARY filegroup
CREATE PARTITION SCHEME Primary_Left_Scheme
AS PARTITION Left_Partition
--Partition must currently exist in database
 ALL TO ([PRIMARY])

CREATE TABLE multiple_partition
(
col1 INT
,col2 VARCHAR(15)
) ON Primary_Left_Scheme (col1)

--Create partitioned non-clustered index
CREATE NONCLUSTERED INDEX cl_multiple_partition ON multiple_
 partition(col1)

INSERT INTO multiple_partition VALUES (1,’Description’)
INSERT INTO multiple_partition VALUES (2,’Description’)
INSERT INTO multiple_partition VALUES (3,’Description’)
INSERT INTO multiple_partition VALUES (4,’Description’)
INSERT INTO multiple_partition VALUES (10,’Description’)
INSERT INTO multiple_partition VALUES (11,’Description’)
INSERT INTO multiple_partition VALUES (12,’Description’)
INSERT INTO multiple_partition VALUES (13,’Description’)
INSERT INTO multiple_partition VALUES (14,’Description’)
INSERT INTO multiple_partition VALUES (100,’Description’)
INSERT INTO multiple_partition VALUES (101,’Description’)
INSERT INTO multiple_partition VALUES (102,’Description’)
INSERT INTO multiple_partition VALUES (103,’Description’)
INSERT INTO multiple_partition VALUES (104,’Description’)

--Verify partitions
SELECT OBJECT_NAME(ps.[object_id])
,ps.partition_number
,ps.row_count
FROM sys.dm_db_partition_stats ps
INNER JOIN sys.partitions p
ON ps.partition_id = p.partition_id
AND p.[object_id] = OBJECT_ID(‘multiple_partition’)

--Verify index partitions
SELECT partition_id, index_id FROM sys.partitions pt
WHERE pt.[object_id] = OBJECT_ID(‘multiple_partition’)

Figure 8 Partitioned, non-clustered index on partitioned table

You can create indexes against
tables where the data in the
index is not aligned to the
data in the table

40_47_SimplifyDB_desfin.indd 46 8/6/07 11:19:03

TechNet Magazine July 2007 47

frequently left unperformed due to the data being locked
while the index was being rebuilt. With SQL Server 2005,
the database administrator can perform index maintenance
online without locking the underlying table for a long pe-
riod of time. But even this approach (which has you per-
forming index maintenance while users are accessing the
data) can still slow down your system due to resource usage.
A better approach is to partition indexes into smaller seg-
ments and then perform index maintenance against those
smaller partitions. For instance, to perform index mainte-
nance against one index partition, you could simply append
the code snippet below to the end of the code shown in
Figure 8.

ALTER INDEX cl_multiple_partition
ON multiple_partition
REBUILD Partition = 2

Note that index maintenance against single index parti-
tions must be performed offline and can cause locking of
the table during the index maintenance. To prevent this,
you can move the single partition into a separate partition,
perform the index maintenance, and then move the parti-

tion back into the main table. This process will cause some
performance issues as the partition is being moved back
into the table and the clustered index is being updated, but
this is less problematic than the locking of the entire table
and requires fewer system resources.

Summary
As you can see, SQL Server 2005 table partitioning provides
much improved flexibility for the storage and maintenance
of data in large tables, without having to rework applica-
tion code or SQL Server processes. With these abilities, SQL
Server proves itself as a capable platform for enterprise-
level, critical databases.	 ■

--Prepare database
IF OBJECT_ID(‘multiple_partition’) IS NOT NULL
DROP TABLE multiple_partition
GO

IF EXISTS(SELECT [name] FROM sys.partition_schemes
WHERE [name] = ‘Primary_Left_Scheme’)
DROP PARTITION SCHEME Primary_Left_Scheme
GO

IF EXISTS(SELECT [name] FROM sys.partition_schemes
WHERE [name] = ‘Index_primary_Left_Scheme’)
DROP PARTITION SCHEME Index_primary_Left_Scheme
GO

IF EXISTS(SELECT [name] FROM sys.partition_functions
WHERE [name] = ‘Left_Partition’)
DROP PARTITION FUNCTION Left_Partition
GO

IF EXISTS(SELECT [name] FROM sys.partition_functions
WHERE [name] = ‘Index_Left_Partition’)
DROP PARTITION FUNCTION Index_Left_Partition
GO

--Create partitioned index function
CREATE PARTITION FUNCTION Index_Left_Partition (int) AS RANGE LEFT
FOR VALUES (10,50,100)

--Create partitioned table
CREATE PARTITION FUNCTION Left_Partition (int) AS RANGE LEFT
FOR VALUES (1,10,100)

--Place all index partitions into the PRIMARY filegroup
CREATE PARTITION SCHEME Index_primary_Left_Scheme
AS PARTITION Index_Left_Partition
--Partition must currently exist in database
 ALL TO ([PRIMARY])

--Place all partitions into the PRIMARY filegroup
CREATE PARTITION SCHEME Primary_Left_Scheme
AS PARTITION Left_Partition
--Partition must currently exist in database
 ALL TO ([PRIMARY])

CREATE TABLE multiple_partition

(
col1 INT
,col2 INT
) ON Primary_Left_Scheme (col1)

--Create non-aligned partitioned nonclustered index
CREATE NONCLUSTERED INDEX cl_multiple_partition ON multiple_
 partition(col2)
ON Index_primary_Left_Scheme (col2)

INSERT INTO multiple_partition VALUES (1,10)
INSERT INTO multiple_partition VALUES (2,10)
INSERT INTO multiple_partition VALUES (3,10)
INSERT INTO multiple_partition VALUES (4,10)
INSERT INTO multiple_partition VALUES (10,50)
INSERT INTO multiple_partition VALUES (11,50)
INSERT INTO multiple_partition VALUES (12,50)
INSERT INTO multiple_partition VALUES (13,50)
INSERT INTO multiple_partition VALUES (14,50)
INSERT INTO multiple_partition VALUES (100,100)
INSERT INTO multiple_partition VALUES (101,100)
INSERT INTO multiple_partition VALUES (102,100)
INSERT INTO multiple_partition VALUES (103,100)
INSERT INTO multiple_partition VALUES (104,100)

--Verify row count on partitioned data
SELECT OBJECT_NAME(ps.[object_id])
,ps.partition_number
,ps.row_count
FROM sys.dm_db_partition_stats ps
INNER JOIN sys.partitions p
ON ps.partition_id = p.partition_id
AND p.[object_id] = OBJECT_ID(‘multiple_partition’)
AND p.index_id = 0

--Verify row count on partitioned index
--Row counts will not match those found in the data partitions
SELECT OBJECT_NAME(ps.[object_id])
,ps.partition_number
,ps.row_count
FROM sys.dm_db_partition_stats ps
INNER JOIN sys.partitions p
ON ps.partition_id = p.partition_id
AND p.[object_id] = OBJECT_ID(‘multiple_partition’)
AND p.index_id <> 0

Figure 9 Non-aligned, non-clustered index on partitioned table

Noah Gomez is a Senior SQL Server Development DBA for
Verizon who specialises in VLDBs and large-scale applications.
He is a member of the Professional Association for SQL Server
(PASS) and was on the Verizon DBA team that worked on the
multi-terabyte VLDBs that won Winter Corp Top Ten Grand
Prize awards in 2003.

40_47_SimplifyDB_desfin.indd 47 8/6/07 11:19:04

