

Security Best Practices

For Developing

Windows Azure Applications

Authors

Andrew Marshall (Senior Security Program Manager, Security Engineering)

Michael Howard (Principal Security Program Manager, Security Engineering)

Grant Bugher (Lead Security Program Manager, OSSC)

Brian Harden (Security Architect, OSSC)

Contributors

Charlie Kaufman (Principal Architect)

Martin Rues (Director, OSSC)

Vittorio Bertocci (Senior Technical Evangelist, Developer and Platform Evangelism)

June 2010 (REVISION 2)

The information contained in this document represents the current view of Microsoft Corporation on the issues

discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it

should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the

accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under

copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or

transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or

for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights
covering subject matter in this document. Except as expressly provided in any written license agreement from
Microsoft, the furnishing of this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

© 2010 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, Hyper-V, SQL Azure, Visual Basic, Visual C++, Visual C#, Visual Studio, Windows,

Windows Azure, Windows Live and Windows Server are either registered trademarks or trademarks of

Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective

owners.

Table of Contents
TABLE OF CONTENTS .. 3

EXECUTIVE SUMMARY ... 5

INTENDED AUDIENCE ... 5

OVERVIEW OF WINDOWS AZURE SECURITY-RELATED PLATFORM SERVICES .. 5

IDENTITY MANAGEMENT AND ACCESS CONTROL .. 6

WINDOWS IDENTITY FOUNDATION .. 6

ACTIVE DIRECTORY FEDERATION SERVICES 2.0 ... 7

WINDOWS AZURE PLATFORM APPFABRIC ACCESS CONTROL SERVICE .. 7

DESIGNING MORE SECURE WINDOWS AZURE SERVICES ... 8

WINDOWS AZURE SERVICE-LAYER SECURITY CONSIDERATIONS .. 8

Namespace Configuration Issues .. 8

Data Security ... 9

Handling Secret Information ... 10

Auditing and Logging .. 10

Request Throttling / Input Sanitization ... 10

WINDOWS AZURE PLATFORM- & INFRASTRUCTURE-LAYER SECURITY PROTECTIONS ... 11

Port Scanning/ Service Enumeration ... 11

Denial of Service .. 11

Spoofing .. 11

Eavesdropping / Packet Sniffing ... 11

Multi-tenant hosting and side-channel attacks .. 11

External Verification .. 12

Runtime Security: Role Separation and Process privileges in Full Trust vs. Windows Azure Partial Trust 12

PUTTING IT ALL TOGETHER: CREATING MORE SECURE WINDOWS AZURE APPLICATIONS 13

ISOLATE WEB ROLES AND SEPARATE DUTIES OF INDIVIDUAL ROLES IN ORDER TO MAXIMIZE THE USE OF WINDOWS AZURE PARTIAL

TRUST. ... 13

USE THE “GATEKEEPER” DESIGN PATTERN TO SEPARATE ROLE DUTIES AND ISOLATE PRIVILEGED ACCESS ... 13

USE MULTIPLE STORAGE KEYS TO RESTRICT ACCESS TO PRIVILEGED INFORMATION WHERE THE GATEKEEPER PATTERN DOES NOT APPLY.14

APPLYING SDL PRACTICES TO WINDOWS AZURE APPLICATIONS .. 15

SECURITY EDUCATION AND AWARENESS ... 16

SECURE DEVELOPMENT PRACTICES ON THE WINDOWS AZURE PLATFORM ... 16

VERIFICATION AND RELEASE ... 17

CONCLUSION .. 17

ADDITIONAL RESOURCES .. 18

APPENDIX A. GLOSSARY .. 19

APPENDIX B. WINDOWS AZURE DEPLOYMENT SECURITY THREAT MATRIX .. 19

APPENDIX C: EXCERPT FROM THE WINDOWS AZURE PARTIAL TRUST POLICY REFERENCE 24

APPENDIX D: USING SDL-APPROVED CRYPTOGRAPHY IN WINDOWS AZURE APPLICATIONS 26

Executive Summary
As businesses seek to cost-effectively consume IT services, interest is growing in moving computation and

storage from on-premise equipment to Internet-based systems, often referred to as “the cloud."

Cloud computing is not restricted to large enterprises; small companies benefit greatly from moving computing

and storage resources to systems such as Windows Azure. In fact, smaller companies are adopting this new

paradigm faster than larger companies1.

The idea that purchasing services from a cloud service provider may allow businesses to save money while

they focus on their core business is an enticing proposition. Many analysts view the emerging possibilities for

pricing and delivering services online as disruptive to market conditions. Market studies and the ensuing

dialogue among prospective customers and service providers reveal some consistent themes and potential

barriers to the rapid adoption of cloud services. Business decision makers want to know, for example, how to

address key issues of security, privacy and reliability in the Microsoft Cloud Computing environment, and they

are concerned as well about the implications of cloud services for their risk and operations decisions.

This paper focuses on the security challenges and recommended approaches to design and develop more

secure applications for Microsoft‟s Windows Azure platform. Microsoft Security Engineering Center (MSEC) and

Microsoft‟s Online Services Security & Compliance (OSSC) team have partnered with the Windows Azure team

to build on the same security principles and processes that Microsoft has developed through years of

experience managing security risks in traditional development and operating environments.

Intended Audience
This paper is intended to be a resource for technical software audiences: software designers, architects,

developers and testers who design, build and deploy more secure Windows Azure solutions.

This paper is organized into two sections2:

 Overview of Windows Azure security-related platform services; and

 Best practices for secure design, development and deployment:

 Service-layer/application security considerations

 Protections provided by the Azure platform and underlying network infrastructure.

 Sample design patterns for hardened/reduced-privilege services.

Overview of Windows Azure security-related platform
services
The following sections describe some of the platform services and security functionality available to developers

who build applications on Windows Azure.

1
 “Cloud Computing: Small Companies Take Flight” BusinessWeek

http://www.businessweek.com/technology/content/aug2008/tc2008083_619516.htm
2
 The distinction between “security features” and “secure features” is an important one. “Security features”

are the technologies, such as authentication or encryption that can help protect a system and its data.

“Secure features” are technologies that are resilient to attack, such as encryption key storage and

management or code with no known vulnerabilities

Identity Management and Access Control
Identity management has emerged as an increasingly complex issue for developers, and proper identity

management remains a priority, even as business networks change. Identity management is as much about

preventing unauthorized third-party access to data as it is about controlling the authorized use of data. Identity

management helps systems control the amount and type of data that users can access, and it helps ensure

that users are performing necessary functions at the lowest-possible privilege levels. Identity management is

also critical for maintaining separation of roles and duties, which may be required by specific regulatory and

compliance standards.

Today, developers face a common challenge: To provide authorized users, clients and systems with access to

the data they require at any time, from any technology, in any location, while meeting basic security

requirements for confidentiality, availability and integrity. At first glance, cloud computing technology might

seem inappropriate or poorly suited to meet such rigorous standards: Developers seek to restrict access to

data that exists in a comparatively uncontrolled environment (cloud), and that data may be co-mingled with

resources that are owned by someone else. Those concerns, while legitimate, can be effectively addressed by

using claims-based identity.

Claims-based identity, an approach to authentication and access management based on open protocols, is an

access control strategy that is consistently applied across the full range of Microsoft product and services. One

of the key properties of claims-based identity is that it reduces infrastructure dependencies because

applications protected with claims-based identity can be hosted on-premises or in the cloud without changes.

Applications targeting Windows Azure can take advantage of the same developer tools, identity management

features and services that are available to their on-premises counterparts.

Below is a list of the most relevant identity technologies and services that can work with Windows Azure to

protect applications and resources.

 Windows Identity Foundation

 Active Directory Federation Services 2.0

 Windows Azure AppFabric Access Control Service

Windows Identity Foundation
Windows Identity Foundation (WIF) is the latest addition to the foundational technologies in the .NET

Framework. It enables .NET developers to offload the identity logic from their application, providing a solid

development model based on separation of concerns. Non-experts can easily secure their applications without

being exposed to the underlying complexity of cryptography and protocols, leveraging Visual Studio integration

features such as point-and-click wizards which result in applications protected using open, interoperable

standards such as WS-Federation and WS-Trust.

Despite the easy to use programming model, which unifies ASP.NET web applications and (Windows

Communication Foundation) WCF SOAP services under a single object model, Windows Identity Foundation has

a full range of security of features offered by WS-Security, the SAML token format and many other enterprise-

grade industry standards.

When using Windows Identity Foundation the mechanics of authentication are provided by external services,

using platform-independent protocols. The application receives information about authenticated users in forms

of claims, which can be used for simple or traditional role-base access control (RBAC) to sophisticated access

control policies.

Because open standards are used, the authentication can take place regardless of where the user accounts are

maintained or where the application is hosted: as a result, single sign on (SSO) across on-premises and

Windows Azure hosted resources is easily achieved.

Although the authentication services can be provided from any platform complying with the open protocols

used by Windows Identity Foundation, the best way to leverage existing investments in the Windows

infrastructure is to outsource authentication to Active Directory Federation Services 2.0.

Active Directory Federation Services 2.0
Although Active Directory Federation Services 2.0 (AD FS 2.0) is a technology that can be deployed on-

premises, it can play a key role in enabling authentication for Windows Azure applications.

AD FS 2.0 is a Windows Server role that extends Active Directory (AD) with claims-based identity capabilities.

AD FS 2.0 provides AD with a Security Token Service (STS) which is a single interface enabling existing users

to authenticate using applications regardless of whether they are hosted in a data center, at one partner‟s site,

or in the cloud. Users are no longer constrained by the boundaries of their local network: if an application

hosted in Windows Azure has been developed using Windows Identity Foundation (or an equivalent stack

complying with the same open standards), AD FS 2.0 allows instantly granting anybody with an account in the

local directory access to this application. All without requiring any form of synchronization, new account

provisioning or duplication.

AD FS 2.0 facilitates the establishment and maintenance of trust relationships with federated partners,

simplifying access to resources and distributed single sign-on.

AD FS 2.0 implements standards such as WS-Trust, WS-Federation and the SAML protocol, and successfully

passed the latest public Liberty Alliance SAML 2.0 interoperability testing which proved out-of-the-box

interoperability with products from IBM, Novell, Ping Identity, SAP, Siemens and many others.

Windows Azure Platform AppFabric Access Control Service
The Windows Azure platform AppFabric Access Control (AC) service is a hosted service that provides federated

authentication and rules-driven, claims-based authorization for REST Web services. REST Web services can rely

on AC for simple username/password scenarios, in addition to enterprise integration scenarios that use Active

Directory Federation Services 2.0.

Applications exposing REST Web services can take advantage of the AC regardless of where they are deployed,

either on-premises, in Windows Azure, or anywhere else where an internet connection is available. AC allows

customers to achieve true externalization of authorization policies, offering the chance of decoupling

applications from most of their authorization logic by hosting it (in the form of claims transformation rules) at

the AC itself.

The AC leverages the OAuth Web Resource Authorization Protocol (OAuth WRAP), a lightweight protocol which

makes it possible to take advantage of claims-based identity with REST-based APIs, without imposing strong

requirements on clients and service providers: this enables unprecedented reach, enabling a wide array of

device types and communication stacks to participate in secure transactions. OAuth WRAP is the basis for the

upcoming Oauth 2.0 specification, a protocol which is catalyzing the consensus of the key players in the Web

space.

AC is also capable of bridging the enterprise identity and the REST worlds, thanks to its capability of using

SAML tokens issued by an AD FS 2.0 instance for accessing REST services via OAuth WRAP protocol.

Future releases of the AC will, among many others, support the protocols implemented by WIF and ADFS 2.0

natively, ensuring seamless integration across solutions based on those technologies

Designing More Secure Windows Azure Services
When it comes to cloud-based solutions, it is more important for software designers and developers to

anticipate threats at design time than is the case with traditional boxed-product software deployed on servers

in a corporate datacenter. This section highlights some specific threats that developers are responsible for

mitigating in the cloud and describes the protections that Windows Azure provides against an array of service-,

platform- and infrastructure-layer security threats.

Windows Azure Service-layer security considerations
The threat landscape for a cloud-based web service is substantially different from traditional hosted web

services in terms of mitigating tools and technologies. Threats also vary dramatically among cloud providers.

Appendix B contains a security threat matrix specific to Windows Azure. This matrix can be used to help

identify which security threats are most important for an application.

The key points are as follows:

 Developers must map the traditional on-premise enterprise security requirements of their application

or service to Windows Azure platform services that provide comparable functionality. Any remaining

threats must be mitigated by the application or service. Consult Appendix B for details about specific

mitigations.

 Understand the security requirements of the service being designed or migrated, especially in the

context of authentication, authorization and auditing. The platform services which provide these

features (Windows Identity Foundation, Windows Azure AppFabric Access Control Service, Windows

Azure Monitoring and Diagnostic APIs) and the methods developers use to invoke them are

substantially different from those provided in an on-premise enterprise deployment (Kerberos, Active

Directory, Windows Event Logs).

 Leverage Windows Azure platform services to build more secure applications.

Despite some of the protections that moving to the cloud may offer, developers are still responsible for writing

good code -- and they are still responsible for the security of their applications when dealing with threats to the

web service code itself. Input field constraint, sanitization and validation are still the most important ways to

help protect a web service application, whether it is a cloud-based application or not. Windows Azure runs web

roles in Internet Information Services 7 Hosted Web Core. Because of IIS7‟s secure default configuration,

developers inherit some basic IIS7 protections, such as the ValidateRequest configuration setting.

Developers must mitigate cross-site scripting attacks by encoding and validating inputs to their services with

the Microsoft Anti-Cross-Site-Scripting library or other similar libraries, especially if that input is displayed back

to the user in a web page. Cross-site request forgery (CSRF) attacks must also be mitigated by setting a

hidden session token in client requests and setting Page.ViewStateUserKey to the current session ID.

Namespace Configuration Issues
Here are a few more configuration issues to be aware of in the cloud:

 Avoid using *servicename*.cloudapp.net domain name - use a custom domain name instead. An

important distinction between the enterprise and the cloud is that the cloudapp.net namespace is

http://msdn.microsoft.com/en-us/library/ms689327.aspx
http://www.microsoft.com/downloads/details.aspx?familyid=051EE83C-5CCF-48ED-8463-02F56A6BFC09&displaylang=en
http://msdn.microsoft.com/en-us/library/ms972969.aspx
http://blog.smarx.com/posts/custom-domain-names-in-windows-azure

shared among all Azure customers while the namespace Microsoft.com is wholly-owned and controlled

by Microsoft. This means that the cloudapp.net namespace is inherently less trusted than the domain

namespace of a single enterprise because one customer of Windows Azure does not automatically

trust all other customers in that domain namespace. Don‟t create code that requires users to place

cloudapp.net in the trusted sites list in their web browser.

 Never scope cookies or document.domain to cloudapp.net. Instead, scope to the service subdomain

(such as contoso.cloudapp.net, for example or, better, www.contoso.com).

For most content, only interactions with content from the same domain are allowed. For example, a typical

page on www.microsoft.com can freely script content on any other page on www.microsoft.com, but it cannot

script to pages that are located on a different Web domain. The DHTML Object Model uses the

document.domain property to enforce this restriction. Only pages with identical domain properties are allowed

free interaction. The protocol of the URL must also match. For example, an HTTP page cannot access HTTPS

content.

Important: Any attempt to broaden document.domain access can leave a service open to scripting attacks from

the entire cloudapp.net domain namespace. IIS7 sets document.domain to the full subdomain by default (like

contoso.cloudapp.net or www.microsoft.com), but the scoping is so often changed by web developers that it

warrants mention.

Data Security
When designing Web Role interactions with Windows Azure Storage, Shared Access Signatures can be a

powerful tool. Shared Access Signatures are effectively access tokens that bestow a set of rights against a blob

or blob container that normally would not be set public. Since web applications are responsible for generating

these tokens, they are also responsible for securely distributing them. In the event that one of these tokens is

compromised, developers can either update the blob/container metadata to invalidate the token, or simply

create a new container for the blob data. However, this is still a reactive measure taken after damage could

have already been done. Outlined, below are guidelines for minimizing risk while using Shared Access

Signatures.

 Generate Shared Access Signatures with the most restrictive set of ACLs possible that still grant the

access required by the trusted party.

 Use the shortest lifetime possible.

 Use HTTPS in the request URL so the token cannot be snooped on the wire.

 Remember that these tokens are only used for temporary access to non-public blob storage – as with

passwords, it‟s a bad idea to use the same ones over and over.

Windows Azure table storage provides a simple structured storage environment and is not SQL-based, so

common SQL injection vulnerabilities do not apply to an application that uses it. However, applications using

SQL Azure or other relational database services still need to mitigate traditional SQL injection threats.

Table storage requests are either made directly, using HTTP GET and POST requests, or they are translated

into these requests by the SDK and LINQ. Since HTTP requests are text, if this request string were constructed

based on data gathered from users, then the user‟s strings could possibly change the semantics of the request

(e.g. by inserting carriage returns or & characters.) To avoid injection attacks, do not base any container

names, blob names, blocks, block IDs, or table names on data gathered from users. When constructing a REST

http://msdn.microsoft.com/en-us/library/ms531073(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms533740(v=VS.85).aspx
http://www.contoso.com/
http://msdn.microsoft.com/en-us/library/ms531073(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms533740(v=VS.85).aspx

query that involves user data, help ensure the data‟s safety by URL encoding before concatenating it into the

query.

Handling Secret Information
Currently there is no support for Data Protection API (DPAPI)-like persistence of secret data in Windows Azure

Storage. If a service must encrypt secret data at rest within Windows Azure Storage, then it needs to encrypt

that data offsite, and before uploading the encrypted payload to blob storage. This can be done easily with an

AES key generated on a client machine or elsewhere within the enterprise. Also, developers should not upload

the key or any keying material to Windows Azure Storage, regardless of how careful they are about hiding it. If

any computer or storage services were compromised, it could lead to encryption keys being exposed. Microsoft

recommends using 256-bit AES keys for symmetric encryption.

Developers also should not store private keys associated with SSL/TLS certificates in Windows Azure Storage.

Instead, upload them through the Developer Portal and access them via thumbprint references in the Service

Configuration. Windows Azure will not only store these certificates encrypted at all times, but also securely

provision them into the certificate stores of the service‟s web roles upon boot. Developers should not attempt

to store certificates anywhere on their own as these actions would constitute re-inventing a protection already

supplied by the platform.

Sample code that shows how to install certificates in Windows Azure is available at

http://blogs.msdn.com/jnak/archive/2010/01/29/installing-certificates-in-windows-azure-vms.aspx.

Appendix D contains security best practices for cryptography usage.

Auditing and Logging
Local VM disk access by Windows Azure roles should be considered temporary and not reliable for anything

more than temp files and caching. On Windows Azure, events are not written to application, security, or audit

event logs as they are on Windows servers. Instead, events data is logged to Windows Azure Storage through

the Monitoring and Diagnostics Agent via trace listeners in web application code. The logs are then stored

long-term in Windows Azure Storage via scheduled transfers performed by the Monitoring Agent.

Windows Azure Table Storage is used to log certain types of events, including Windows Event and Diagnostics

Logs, Windows Azure Logs and performance counters.

Windows Azure does not currently support encryption-at-rest of table storage information, so developers

should not write sensitive information to any events stored in Windows Azure Table Storage. Refer to

“Handling Secret Information” on page 8 for more information about encrypting sensitive data.

Developers must decide to use HTTP or HTTPS depending on the contents of the logs. If an application is

logging a large amount of data that won‟t be of interest to outside parties or eavesdroppers, then HTTP can be

used for a faster transfer. However, Microsoft recommends protecting all log data in transit to Windows Azure

Storage by using HTTPS.

Request Throttling / Input Sanitization
Developers must do application-level throttling of incoming requests for any kind of complex, time-intensive

operation.

It is also important to fuzz test any new parsers deployed as part of a web service. The Microsoft Security

Development Lifecycle (SDL) portal at http://www.microsoft.com/sdl provides resources on fuzzing parsers. If

a service is parsing a proprietary file or request format (perhaps encapsulated inside HTTP), then fuzz test it to

ensure the code can correctly accommodate malformed input. Generally speaking, an automated fuzzing

http://blogs.msdn.com/jnak/archive/2010/01/29/installing-certificates-in-windows-azure-vms.aspx
http://www.microsoft.com/sdl

framework that fuzzes 100,000 iterations of each new format or protocol without crashing, or runs non-stop for

24 hours, will give developers a good indication of threat resistance. This is the fuzzing requirement that

Microsoft currently applies to “boxed-product” software.

Windows Azure Platform- & Infrastructure-layer security protections
This section outlines security threats that are mitigated on developers‟ behalf by the Windows Azure platform

and underlying network infrastructure.

Port Scanning/ Service Enumeration
The only ports open and addressable (internally or externally) on a Windows Azure VM are those explicitly

defined in the Service Definition file. Windows Firewall is enabled on each VM in addition to enhanced VM

switch packet filtering, which blocks unauthorized traffic

Denial of Service
Windows Azure‟s load balancing will partially mitigate Denial of Service attacks from the Internet and internal

networks. This mitigation is done in conjunction with the developer defining an appropriate Service Definition

VM instance count scale-out. On the Internet, Windows Azure VMs are only accessible through public Virtual

IP Addresses (VIPs). VIP traffic is routed through Windows Azure‟s load-balancing infrastructure. Windows

Azure monitors and detects internally initiated Denial of Service attacks and removes offending VMs/accounts

from the network. As a further protection, the root host OS that controls guest VMs in the cloud is not directly

addressable internally by other tenants on the Windows Azure network and the root host OS is not externally

addressable.

Windows Azure is also reviewing additional Distributed Denial of Service (DDoS) solutions available from

Microsoft Global Foundation Services to help further protect against Denial of Service attacks.

Spoofing
VLANs are used to partition the internal network and segment it in a way that prevents compromised nodes

from impersonating trusted systems such as the Fabric Controller. At the Hypervisor VM Switch, additional

filters are in place to block broadcast and multicast traffic, with the exception of what is needed to maintain

DHCP leases. Furthermore, the channel used by the Root OS to communicate with the Fabric Controller is

encrypted and mutually authenticated over an HTTPS connection, and it provides a secure transfer path for

configuration and certificate information that cannot be intercepted.

Eavesdropping / Packet Sniffing
The Hypervisor‟s Virtual Switch prevents sniffer-based attacks against other VMs on the same physical host.

Top-of-rack switches will be used to restrict which IP and MAC addresses can be used by the VMs and

therefore mitigate spoofing attacks on internal networks. To sniff the wire inside the Windows Azure cloud

environment, an attacker would first need to compromise a VM tenant in a way that elevated the attacker to

an administrator on the VM, then use a vulnerability in the hypervisor to break into the physical machine root

OS and obtain system account privileges. At that point the attacker would only be able to see traffic inbound to

the compromised host destined for the dynamic IP addresses of the VM guests controlled by the hypervisor.

Multi-tenant hosting and side-channel attacks
Information disclosure attacks (such as sniffing) are less severe than other forms of attack inside the Windows

Azure datacenter because virtual machines are inherently untrusted by the Root OS Hypervisor. Microsoft has

done a great deal of analysis to determine susceptibility to side-channel attacks. Timing attacks are the most

difficult to mitigate. With timing attacks, an application carefully measures how long it takes some operations

to complete and infers what is happening on another processor. By detecting cache misses, an attacker can

figure out which cache lines are being accessed in code. With certain crypto implementations involving lookups

from large tables, knowing the pattern of memory accesses - even at the granularity of cache lines - can reveal

the key being used for encryption. While seemingly far-fetched, such attacks have been demonstrated under

controlled conditions.

There are a number of reasons why side-channel attacks are unlikely to succeed in Windows Azure:

 An attack works best in the context of hyper-threading, where the two threads share all of their

caches. Many current CPUs implement fully independent cores, each with a substantial private cache.

The CPU chips that Windows Azure runs on today have four cores per chip and share caches only in

the third tier.

 Windows Azure runs on nodes containing pairs of quad-core CPUs, so there are three other CPUs

sharing the cache, and seven CPUs sharing the memory bus. This level of sharing leads to a great deal

of noise in any signal from one CPU to another because actions of multiple CPUs tend to obfuscate the

signal.

 Windows Azure generally dedicates CPUs to particular VMs. Any system that takes advantage of the

fact that few servers keep their CPUs busy all the time, and implements more logical CPUs than

physical CPUs, might open the possibility of context switches exposing cache access patterns.

Windows Azure operates differently. VMs can migrate from one CPU to another, but are unlikely to do

so frequently enough to offer an attacker any information.

External Verification
Microsoft contracted two top-tier penetration testing firms to conduct security assessments on different

elements of the Windows Azure architecture before the Professional Developers Conferences (PDC) in 2008

and 2009. Each firm spent a significant amount of time examining hardened virtualization boundaries and

probing for side-channel or I/O thrashing attacks. Neither firm was able to mount a successful attack against

this design. That is not to say that such attacks are impossible to execute successfully, but six professional

penetration testers working over the course of seven weeks were unable to do so. These tests supplemented

required internal security testing.

Runtime Security: Role Separation and Process privileges in Full Trust vs.
Windows Azure Partial Trust
Windows Azure has a custom, restricted-privilege trust model available to all roles called “Windows Azure

Partial Trust.” Based on customer demand, Windows Azure also supports Full Trust with Native Code

Execution.

Full Trust with Native Code Execution facilitates the following scenarios:

 Use of FastCGI or PHP.

 Migration of traditional web services to the cloud.

 Role invocation and spawning Windows sub-processes (native code or managed).

 Calls into native libraries via P/Invoke (Platform Invocation Services).

A role that does not require the above functionality should have Windows Azure Partial Trust enabled. This

option not only minimizes the attack footprint of the role in question, but it also helps reduce damage caused

by a compromised role (see the Windows Azure Partial Trust comparison to Full Trust later in this document).

http://msdn.microsoft.com/en-us/library/dd573355.aspx
http://msdn.microsoft.com/en-us/library/dd573355.aspx
http://msdn.microsoft.com/en-us/library/dd573345.aspx

Regardless of the trust model selected, customer roles are hosted in non-Admin svchost processes. These

svchost processes run under virtual service account SIDs, and not as local system or network service or

administrator. This limitation provides two levels of defense-in-depth protection:

 A compromised service cannot manipulate other instances of that service if those instances reside on

other VMs, and that helps limit an intrusion to a machine targeted for attack.

 A compromised service cannot easily attack the VM guest operating system in order to compromise

the physical host OS. A compromised web role running in Windows Azure Partial Trust cannot

P/Invoke native code binaries which could then be used to expose sensitive information about the

service from the virtual machine (such as storage key data or application-specific intellectual property

that could be present in memory). Direct attacks on the root host through the root/guest Hypervisor

boundary in an attempt to gain control of the system are also mitigated.

Putting it all together: Creating more secure Windows
Azure applications
By understanding the Windows Azure runtime trust models and the security protections and responsibilities of

each cloud layer, developers can build hardened applications using the design best practices outlined below.

Isolate web roles and separate duties of individual roles in order to
maximize the use of Windows Azure Partial Trust.
The Trust Levels Appendix C illustrates a subset of Partial Trust Policy Restrictions. The complete listing of

restrictions is available in “Windows Azure Partial Trust Policy Reference.” The impact of these security

restrictions illustrates the value of using Windows Azure Partial Trust to help secure Windows Azure services,

especially externally-facing web roles. Most access to the local environment variables, file system and registry

is restricted. Socket and Web connection permissions are also locked down.

Use the “Gatekeeper” design pattern to separate role duties and
isolate privileged access
A Gatekeeper is a design pattern in which access to storage is brokered so as to minimize the attack surface of

privileged roles by limiting their interaction to communication over private internal channels and only to other

web/worker roles. These roles are deployed on separate VMs. In the event of a successful attack on a web

role, privileged key material is not compromised. The pattern can best be illustrated by the following example

which uses two roles:

 The GateKeeper – this is a web role that services requests from the Internet. Since these requests are

potentially malicious, the Gatekeeper is not trusted with any duties other than validating the input it

receives. The GateKeeper is implemented in managed code and runs with Windows Azure Partial

Trust. The service configuration settings for this role do not contain any Shared Key information for

use with Windows Azure Storage.

 The KeyMaster – this is a privileged backend worker role that only takes inputs from the Gatekeeper

and does so over a secured channel (an internal endpoint, or queue storage – either of which can be

secured with HTTPS). The KeyMaster handles storage requests fed to it by the GateKeeper, and

assumes that the requests have been sanitized to some degree. The KeyMaster, as the name implies,

is configured with Windows Azure Storage account information from the service configuration to

enableretrieval of data from Blob or Table storage. Data can then be relayed back to the requesting

http://msdn.microsoft.com/en-us/library/dd573355.aspx

client. Nothing about this design requires Full Trust or Native Code, but it offers the flexibility of

running the KeyMaster in a higher privilege level if necessary.

Figure 1: The Gatekeeper Design Pattern

This solution is not ideal, since the KeyMaster is relying on GateKeeper to tell it what content to serve out.

However, it does provide for separation of duty and it can poses additional challenges for an attacker. The

amount of trust the KeyMaster places in the GateKeeper can be custom-tailored, but it is advisable to minimize

the types of access requests allowed from the GateKeeper -- allowing the KeyMaster to accept Storage Blob

API read and list operations from GateKeeper, but not add or delete operations, for example.

This pattern can easily be adapted to work with more complex service architectures on Windows Azure. All that

is needed is to put a partial trust “Gatekeeper” in front of more privileged (or native code) roles to do the

parsing of potentially malicious data from the network. The concept is analogous to a firewall running as

Network Service to interact with foreign TCP payloads before pushing them up the stack to more critical

components.

Use multiple storage keys to restrict access to privileged information
where the Gatekeeper pattern does not apply.
In scenarios where a partial-trust Gatekeeper cannot be placed in front of a full-trust role, a multi-key design

pattern can be used to protect trusted storage data. An example case of this scenario might be when a PHP

web role is acting as a front-end web role, and placing a partial trust Gatekeeper in front of it may degrade

performance to an unacceptable level.

Up to five storage keys can be assigned to one Windows Azure subscription. This diversity can be used to

minimize exposure of a particular key to theft by placing lower-trust keys on lower-trust roles and higher-trust

keys on higher-trust roles.

 ”Untrusted web role A” in the figure below has access to only one storage account, and it is not trusted to do

anything but parse incoming requests and log them to storage account „A‟. “Trusted Role B” (in the

background) has the account keys for both storage „A‟ and „B‟, but is not exposed to potentially-malicious,

malformed inputs. “Trusted Role B” processes and filters requests from the untrusted role via storage „A,‟ but

expects a specific structure or format. „B‟ never fully trusts „A,‟ allowing for the “real” storage key of value

(account „B‟) to be protected even in the event of a fully compromised, externally-facing, untrusted role. As

with the Gatekeeper pattern, the trusted role should not provide unfettered access to the trusted store on

behalf of Web Role „A.‟ Instead, only a subset of legitimate commands should be serviced (such as read, but

not create/update/delete in certain cases).

Figure 2: The multi-key design pattern

The multi-key design pattern has some advantages over the Gatekeeper/KeyMaster pattern:

 Providing separation of duty for storage accounts. In the event of Web Role A‟s compromise; only the

untrusted storage account and associated key are lost.

 No internal service endpoints need to be specified. Multiple storage accounts are used instead.

 Windows Azure Partial Trust is not required for the externally-facing untrusted web role. Since PHP

does not support partial trust, the Gatekeeper configuration is not an option for PHP hosting.

Applying SDL Practices to Windows Azure
Applications
This next section describes the security practices that should be considered when designing and building

Windows Azure applications.

The Microsoft Security Development Lifecycle (SDL) applies equally to applications built on the Windows Azure

platform and any other platform. Most Windows Azure applications have been built, or will be built using agile

methods. As a result, the SDL for agile process may be more applicable to applications hosted on Windows

Azure than to the classic phase-based SDL.

The Microsoft SDL Web site covers SDL for Agile in detail.

http://www.microsoft.com/sdl
http://www.microsoft.com/sdl

Microsoft requires that the SDL be followed for any Microsoft-developed software deployed on Windows Azure.

The SDL addresses security threats throughout the development process by means that include threat

modeling during the design process; following development best practices and code security standards during

coding; and requiring various tools for testing and verification before deployment. These proactive checks

during development make software less vulnerable to potential threats after release, and the SDL provides a

structured and consistent methodology with which to apply them. These methodologies, which are supported

by an executive commitment to security, have helped Microsoft develop more secure software. Anyone who

develops software in Windows Azure can use these same methods to improve security.

Security Education and Awareness
If a development team does not understand the basics of secure design and development, or the risks of

running web-based software and services, then security training is imperative, and it should be completed

before any Windows Azure application is designed, built, tested or deployed. All members of software

development teams should be informed about security basics and recent trends in security and privacy, and

they should attend at least one relevant security training class every year - at a minimum. Development team

members should be encouraged to seek opportunities for additional security and privacy education. Developers

who are well-versed and up-to-date on security issues are better able to design and develop software with

security in mind first and foremost -- and not as an afterthought or “bolt-on” feature added at the end of the

development process.

Given that Windows Azure applications are usually web-based managed code (ASP.NET) applications,

appropriate topics for security education include:

 Secure design, including the following topics:

 Attack surface reduction

 Defense in depth

 Principle of least privilege

 Threat modeling

 Secure coding, including the following topics:

 Cross-site scripting

 SQL injection

 Managed code security (transparency, code access security, assembly strong naming, etc.)

The SDL Process Guidance documentation provides links to books and training materials that are useful for

beginning an SDL training program.

Secure Development Practices on the Windows Azure platform
The SDL provides guidance for use of development tools and practices that are applicable on the Azure

platform. For the current version of compilers, linkers and other tools mandated by the SDL, see the SDL

Process Appendix E.

 Use the SDL-required (or later) compiler versions to compile for the Win64 target platform:

 C/C++ code: Visual C++ 2008 SP1

 C# or Visual Basic .NET code: Visual C# 2005 and Visual Basic .NET 2005

http://msdn.microsoft.com/en-us/magazine/cc163882.aspx
http://www.stsc.hill.af.mil/crosstalk/2008/09/0809howard.html
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://www.microsoft.com/security/sdl/getstarted/threatmodeling.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=79042476-951f-48d0-8ebb-89f26cf8979d&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=79042476-951f-48d0-8ebb-89f26cf8979d&displaylang=en
http://msdn.microsoft.com/en-us/library/930b76w0.aspx
http://msdn.microsoft.com/en-us/security/sdl-process-guidance.aspx
http://msdn.microsoft.com/en-us/library/cc307395.aspx
http://msdn.microsoft.com/en-us/library/cc307395.aspx

 Compile and link native C/C++ code with /GS, /SAFESEH, /DYNAMICBASE and /NXCOMPAT. These

options are enabled by default in Visual C++ 2008 SP1 and later. You can verify these settings using

the BinScope binary analyzer.

 Native C and C++ code must not use banned versions of buffer handling functions. For more

information, see Security Development Lifecycle (SDL) Banned Function Calls.

 Use the currently required (or later) versions of code analysis tools for native C and C++ (the /analyze

compiler option).

 Run the FxCop code analysis tool against all managed code and fix all violations of the “Security” rules

for the version of FxCop used.

 Follow data input validation and output encoding requirements to address potential cross-site scripting

vulnerabilities.

 If using Microsoft SQL Azure database storage, only use parameterized queries or LINQ when

accessing SQL-based data stores. Never dynamically construct a SQL statement from strings.

 Use an approved XML parser, such as .NET‟s System.Xml classes or, for native C++ code, use

MSXML6 or XmlLite.

 Make sure your application is compliant with SDL cryptographic retirements laid out in “Appendix D:

Using SDL-approved cryptography in Windows Azure” on page 26.

Verification and Release
Testing tools covered under SDL Process Guidance should be selected according to the specific technologies a

Windows Azure application uses. Many of the tools used for COM/DCOM, RPC, or ActiveX testing, as well as for

File Fuzzing, can be used on Windows Azure applications.

Conclusion
Computing solutions that use Windows Azure are very compelling to companies wishing to trim capital

expenditure. However, security remains an important consideration. Software architects and developers must

understand the threats to software developed for “the cloud” and use appropriate secure design and

implementation practices to counter threats in the cloud environment. The progression from classic, client-

server computing, to web-enabled applications, to applications hosted in the cloud, has changed the

boundaries of applications, and these boundary shifts make understanding the threats to Windows Azure-

based software all the more important. The work required to develop secure Windows Azure applications isn‟t

new, revolutionary, or technically challenging; it simply requires that designers and developers consider the

potential threats to their applications and apply the practices described in this paper.

http://msdn.microsoft.com/en-us/magazine/dvdarchive/cc337897.aspx
http://msdn.microsoft.com/en-us/magazine/dvdarchive/cc337897.aspx
http://msdn.microsoft.com/en-us/magazine/dvdarchive/cc337897.aspx
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=90e6181c-5905-4799-826a-772eafd4440a
http://msdn2.microsoft.com/en-us/library/bb288454.aspx
http://msdn.microsoft.com/en-us/library/ms173498.aspx
http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx
http://msdn.microsoft.com/en-us/library/cc307418.aspx

Additional Resources

Microsoft Security Development Lifecycle (SDL) Portal
http://www.microsoft.com/sdl

Windows Azure Portal
http://www.microsoft.com/windowsazure/windowsazure/

Windows Azure Developer Portal
http://dev.windowsazure.com

Identity Developer Training Course
http://channel9.msdn.com/learn/courses/IdentityTrainingCourse/

Windows Identity Foundation
http://msdn.microsoft.com/en-us/security/aa570351.aspx

Active Directory Federation Services
http://www.microsoft.com/windowsserver2008/en/us/ad-fs.aspx

Microsoft‟s Compliance Framework for Online Services
http://www.globalfoundationservices.com/documents/MicrosoftComplianceFramework1009.pdf

Securing Microsoft's Cloud Infrastructure
http://www.globalfoundationservices.com/security/index.html

About Cross-Frame Scripting and Security
http://msdn.microsoft.com/en-us/library/ms533028(VS.85).aspx

http://www.microsoft.com/sdl
http://www.microsoft.com/windowsazure/windowsazure/
http://dev.windowsazure.com/
http://channel9.msdn.com/learn/courses/IdentityTrainingCourse/
http://msdn.microsoft.com/en-us/security/aa570351.aspx
http://www.microsoft.com/windowsserver2008/en/us/ad-fs.aspx
http://www.globalfoundationservices.com/documents/MicrosoftComplianceFramework1009.pdf
http://www.globalfoundationservices.com/security/index.html
http://msdn.microsoft.com/en-us/library/ms533028(VS.85).aspx

Appendix A. Glossary
Developer Portal The Windows Azure Developer Portal is an administrative portal for managing,

deploying and monitoring Windows Azure services. The Developer Portal can be

accessed at http://windows.azure.com

Fabric

The logical clusters of machines which provide a role execution environment inside a
virtual machine.

Partial Trust

Partial trust is a concept in .NET that allows executable code to run with reduced
capabilities such as the ability to print, make a socket connection or open files.

REST REpresentational State Transfer; a software design that uses a stateless client-server
architecture in which the web services are viewed as resources and can be identified by
their URLs.

SAML Security Assertion Markup Language. An XML-based industry standard for exchanging
authentication and authorization information.

SDL

The Microsoft SDL is a security assurance process that is focused on software
development. It is a collection of mandatory security activities, grouped by the phases
of a software development life cycle (SDLC). You can learn more about the Microsoft
SDL at http://www.microsoft.com/security/sdl/default.aspx

Svchost Svchost is a process for hosting Windows services. The services are implemented as
DLLs.

VM A software emulation of a computer that runs in an isolated partition of a real
computer.

VMBus

The subsystem that transfers data between the root operating system and guest virtual
machines

Web Role

A web role is a role that is customized for web application programming as supported
by IIS 7 and ASP.NET.

Worker Role

A worker role is a role that is useful for generalized development and may perform
background processing for a web role

Appendix B. Windows Azure Deployment Security
Threat Matrix
This appendix focuses on security issues specific to customer-deployed services that run on Windows Azure, to

help highlight areas of increased risk and complexity compared to Software as a Service (SaaS) deployments

using traditional web services. The goal of this appendix is to help Windows Azure developers and customers

understand which security threats are mitigated by the Windows Azure environment and which security threats

must be mitigated by the developer.

This appendix does not enumerate every conceivable threat to an application running on the Windows Azure

infrastructure, nor does it address regulatory compliance issues.

Legend:

Mitigation is transparent to the customer, no action required.

http://go.microsoft.com/fwlink/?LinkID=130875
http://windows.azure.com/
http://en.wiktionary.org/wiki/partition

Mitigation is provided by underlying platform/infrastructure
and must be utilized by the customer's web application/service;

Requires calls to existing/provided APIs.

Mitigation is per-service and is not provided at a lower level;
Must be mitigated by the customer‟s code.

Mitigation is not yet implemented (planned for a future version of
Windows Azure) but will be transparent to the customer once complete.

Mitigation is not yet implemented (planned for a future version of
Windows Azure) and will require customer code to use Windows Azure

APIs once complete.

Threat
Layer where
mitigation is
implemented

Nature of mitigation
provided
(if specific to
Windows Azure)

Application/Service-layer
mitigation required

Is this

issue
higher risk
or more
complex in
cloud
deploymen
ts?

Spoofing

ARP Flooding Platform VM Switch None Required No

IP address spoofing
Infrastructure &
Platform

Top-of-rack switches
restrict which IP and
MAC addresses VMs
use

None Required No

DNS spoofing Infrastructure
Microsoft Live DNS
Services

None Required No

Tampering

Packet
tampering/interceptio
n on VM Bus

Platform

Trusted Channel
between Hypervisor
and VM tenants, VM
switch has additional
packet filters imposed

None Required Yes

Windows Azure OS
binary tampering

Platform

Binaries are Microsoft-
signed and managed
assemblies are strong
named

Verify the signature of
Windows Azure SDK binaries
referenced in the application
code.

Yes

Local
Filesystem/Registry
Tampering by

compromised web
services

Platform

Web Roles run as non-
admin; strong ACLs on
file system/registry
enforced by runtime

None Required Yes

Tampering/disclosure
of credentials or other
sensitive application
data

Web Role

Use Windows Identity
Foundation and HTTPS
mutual authentication for SSL
connections

No

Tampering with
customer
configuration data,
encryption keys and

intellectual property
during web role
provisioning

Infrastructure &
Platform

VLANs, IP ACLs, Mutual
SSL authentication in
use between fabric

controller and
root/guest nodes.

None Required No

Repudiation

Audit log collection,
storage and analysis

Platform and Web
Role

Windows Azure
Monitoring and

Diagnostics APIs

Use monitoring and
diagnostic APIs as needed;
transfer logs to Storage

private blob/table storage
over HTTPS

Yes

Information
Disclosure

Footprinting or
enumeration of
services & applications

in the VM

Platform

VLANs, HW & SW
firewalls, VM switch
filters, IP filtering in VM

Guest

None Required Yes

http://microsoftpdc.com/Sessions/SVC15
http://microsoftpdc.com/Sessions/SVC15

Side-channel attacks
against VM Guests on
the same physical
host

Platform

1 VM per core, no
communications
between different
tenants

None Required Yes

Disclosure of data in
transit between client
and server

Platform and Web
Role

Use HTTPS in place of HTTP
where sensitive data is
transferred

Yes

Disclosure of SSL
Certificates/keys used
by Web Roles

Platform and Web
Role

Secure provisioning via
Windows Azure
Certificate Store

Use the certificate store for
client and server SSL
certificate storage

Yes

Disclosure of arbitrary

secrets in
blob/table/queue
storage

Web Role/Client

Pre-encrypt secret data prior

to uploading. Do not store
decryption keys in Windows
Azure Storage

Yes

Disclosure of Shared
Access Signatures

Web Role/Client

Use HTTPS to securely
transfer Shared Access
Signatures to intended
recipients and set appropriate
permissions on containers.

Yes

Physical theft of
storage account
information, code or
other intellectual
property

Infrastructure
Physical Security and
Operations Policies

None Required No

Encrypted Storage of
Arbitrary Secrets in
Windows Azure
Storage

Platform
Will require API calls similar
to DPAPI

Yes

Denial of Service

Denial of Service
attacks via network
bandwidth saturation
(packet flooding)

Platform

Load balancing &

throttling in network
infrastructure

None Required No

http://msdn.microsoft.com/en-us/library/ee395415.aspx
http://msdn.microsoft.com/en-us/library/ee395415.aspx
http://msdn.microsoft.com/en-us/library/dd179391.aspx

Identification of
botnets and malicious
network traffic

Infrastructure
Windows Azure Live
Services monitors and
investigates

None Required Yes

Deep packet
inspection for network
attacks with known
signatures

Platform None Required Yes

Flooding of Web Role
local storage or
blob/table storage

Platform
Quotas, ACLs, Reduced

privilege execution and
flood monitoring
protection

None Required
Yes

Request flooding at
the customer
code/app level

Web Role Implement application-level
request throttling if necessary

No

Elevation of
Privilege

Anti-virus scanning of
VM Guests/Hosts

Platform None Required Yes

Misconfiguration of
Service/Application
settings

Web Role

Must scope all cookies and
the document.domain
property to the service
subdomain (eg.

http://contoso.cloudapp.net)
and NOT to *.cloudapp.net

Yes

Cross-site Request
Forgery Attacks
against the web role

Web Role Use ASP.NET defenses No

Cross-site Scripting
Attacks against the
web role

Web Role Use the Anti-XSS Library No

API fuzzing attacks on

interfaces exposed by
the web role

Web Role

Fuzz all interfaces and
endpoints unique to code
exposed to the web (or any
other services)

No

http://msdn.microsoft.com/en-us/library/ms972969.aspx
http://www.codeplex.com/AntiXSS

Network packet

fuzzing attacks against
network protocols
used by web role

Platform

IPFilter driver
customizations fuzzed
to SDL requirements,
external penetration
testing performed

None Required No

File Fuzzing attacks
against file parsers
which are part of
Windows Server 2008

Platform

Existing parsers fuzzed
to SDL requirements,
external penetration
testing performed

None Required No

File Fuzzing attacks

against custom,
application-provided
file parsers

Web Role
Fuzz test all proprietary
network protocol or file
format parsers

No

Patching of security
vulnerabilities at the
Web Role/customer
code level

Web Role
Have a security response and
updating plan in place

No

API Fuzzing attacks
against the Hypervisor
root

Platform

APIs fuzzed to SDL

requirements, external
penetration testing
performed

None Required Yes

Appendix C: Excerpt from the Windows Azure Partial
Trust Policy Reference
This is an abbreviated version of the full Windows Azure Partial Trust Policy available at the MSDN Portal. By

default, roles deployed to Windows Azure run under full trust. To run your role under partial trust, you must

add the enableNativeCodeExecution attribute on the WebRole or WorkerRole element and set it to false.

Legend:

WA Partial Trust is more restrictive here than ASP.Net Medium Trust

WA Partial Trust behavior differs from ASP.Net Medium Trust without being more restrictive

WA Partial Trust behavior is the same as ASP.Net Medium Trust

http://www.microsoft.com/security/sdl/default.aspx
http://www.microsoft.com/security/sdl/default.aspx
http://msdn.microsoft.com/en-us/library/dd573355.aspx

Permission State ASP.NET medium trust

Windows Azure

partial trust

AspNetHosting Level Medium Medium

EnvironmentPermission Unrestricted TEMP; TMP; USERNAME;
OS; COMPUTERNAME

TEMP;TMP

 Read TEMP; TMP; USERNAME;
OS; COMPUTERNAME

TEMP;TMP

 Write TEMP; TMP; USERNAME;
OS; COMPUTERNAME

TEMP;TMP

FileIOPermission Unrestricted Denied Denied

 Read $AppDir$ $AppDir$; Any
named local store

 Write $AppDir$ Any named local
store

 Append $AppDir$ Any named local
store

 PathDiscovery $AppDir$ $AppDir$; Any
named local store

IsolatedStorageFilePermission Unrestricted Denied Denied

 AssemblyIsolationByUser Permitted Denied

 UnrestrictedUserQuota Permitted Denied

RegistryPermission Unrestricted Denied Denied

SecurityPermission Assertion Permitted Denied

 RemotingConfiguration Permitted Denied

SocketPermission Connect Denied External sites
only

TCP

 Accept Denied Denied

SqlClientPermission Unrestricted Permitted External sites
only

WebPermission Unrestricted Denied Denied

 Connect $OriginHost$ External sites
only

 Accept Denied Denied

Appendix D: Using SDL-approved cryptography in
Windows Azure Applications
Many applications require the use of cryptographic technologies for encryption, tampering detection, signatures

etc., and the SDL is prescriptive about which cryptographic technologies should be used. The following is a list

of some of the more common requirements you will encounter when building a Windows Azure application.

 Where possible, use SSL/TLS (by using HTTPS) to transfer data between all parties, such as:

 Clients <-> Web and Worker Roles

 Clients <-> Storage endpoints

 Web Roles <-> Web and Worker Roles over internal endpoints

 Web and Worker Roles <-> Storage endpoints

 Web roles supporting HTTPS should be provisioned with certificates supporting 2048-bit RSA keys.

 Certificates should be renewed annually by refreshing the service configuration with the thumbprint of

any new certificate uploaded via the developer portal.

 Use AES for symmetric cryptographic operations.

 Use 256-bit symmetric keys. This is especially important when a role needs to store encrypted data in

Windows Azure Storage.

 Use RSA or Elliptic Curve Cryptography (ECC) for asymmetric cryptographic operations.

 Use RSA keys that are 2048-bit or longer.

 Use a SHA-2 algorithm (SHA-256, SHA-384 or SHA-512) for hashing and message-authentication

codes.

 Use the strong entropy provisioned into the VM if keys are derived in role code. Windows Azure virtual

machines are specially provisioned with strong entropy at boot.

 For more guidance on use of cryptography, see http://msdn.microsoft.com/en-us/security/sdl-process-

guidance.aspx

 Store SSL/TLS certificates with Windows Azure Certificate Services, not in Windows Azure Storage or

on local disk.

http://msdn.microsoft.com/en-us/security/sdl-process-guidance.aspx
http://msdn.microsoft.com/en-us/security/sdl-process-guidance.aspx
http://msdn.microsoft.com/en-us/library/ee758713.aspx

