

How to scale SQL Azure
databases

Edwin Cheung

Principal Program Manager

China Cloud Innovation Centre

Customer Advisory Team

Microsoft Asia-Pacific Research

and Development Group

4 |

CONTROL

C
O

S
T

-
E

F
F
IC

IE
N

C
Y

(On-premise)

Value Prop:

Value Prop:

Roll-your-own
HA/DR/scale

(IaaS)

Value Prop:

(PaaS)

6 |

DISPERSED USERS &

DATA ELASTIC DEMAND SCALE OUT

Millions of users

Hundreds of thousands of operations per second

Thousands of cores

Hundreds of databases

7

Category Metric

Largest sharded SQL database 20 TB

Largest number of databases 11,000

Most worker instances 6,000

Most number of cores 24,000

Largest Microsoft App 1 Exabyte

Largest Customer App 50 PB

• Workload driven design

• Fan-out the application tier to
support the workload

• Loosely couple: asynchronous,
but keep close and process fast

• Use cache for data and content

• Batch together storage/database
operations if possible

• Partition Azure storage objects
across multiple storage accounts
if necessary

• Size appropriate (instance size
and number of instances)

•Read-only data
separated from read-
write data

•Affinitize application and database as
scale unit

SQL Azure Federation

Time

Resources available

to an individual DB

0

CPU Max possible

Multi-tenant resource sharing environment

1. Structured or un-
structured data

2. Persisted or
temporary data

3. Secure or insecure
data

4. Other Factors –

• Client connectivity

• Performance

• Availability

• Manageability

Storage

Offering
Purpose

Maximum

Size

Local Storage
Per-instance temporary

storage
250GB to 2TB

Windows Azure

Storage
Durable storage for.....

Blob

Large binary

objects such as

video or audio

200GB or 1TB

Table Kay/value pairs 100TB

Queue
Inter-process

Messages
100TB

SQL Database
Relational Database

Management System
150GB

• System Drive (C:\)

• Temporary
Storage (D:\)

• Attached Disks

Virtual Machine Sizes and SQL Server Editions

VM

Size

CPU

Cores
Memory

Bandwid

th

Data

Disks

SQL

Server

Edition

Extra

small
Shared 768 MB 5 (Mbps) 1 Express

Small 1 1.75 GB
100

(Mbps)
2 Any

Medium 2 3.5 GB
200

(Mbps)
4 Any

Large 4 7 GB
400

(Mbps)
8 Any

Extra

large
8 14 GB

800

(Mbps)
16 Any

Each persistent data disk can be up to 1 TB

Data access implementation in Windows
Azure and SQL Azure introduces
additional complexity around two main
areas

• Retry logic necessary to implement reliable communications
between application and database server

between app tier and database tier on Azure is

higher compared to an on premises deployment
• Firewalls, load balancers, gateways

• This amplifies the impact of chatty application behaviors

• Connection loss
• Idle connections idle for 30 minutes or longer will be terminated

• Transaction termination: kills all transactions after they run for 24
hours.

• Denial of Service attacks: high number of login failures from a
particular IP address, SQL Azure will block the connections from that
IP address for a period of time

• Failover

• Load balancing

• Microsoft Enterprise Library Transient Fault Handling Application Block

• Throttling
• Protect a machine from sustained high usage of system resources

• Evaluate actual resource usage vs. safe thresholds real-time

• Throttle the busiest DBs first (soft throttle)

• Throttle every DB if necessary (hard throttle)

http://msdn.microsoft.com/en-us/library/hh680934(v=pandp.50)

• Network Latency:
1. Between User and Application

2. Between Application and SQL Azure DB

• Perceived performance:
• Response Time = 2x(Latency_1 + Latency_2) + App_Time + SQL_Time

• Optimization
• Minimize latency 1: select data center closest to majority of your users

• Minimize latency 2: co-locate with Windows Azure application

• Minimize network round trips

SQL

Azure

Blog Post: Testing Client Latency to

SQL Azure

SQL

Azure

http://blogs.msdn.com/cfs-file.ashx/__key/CommunityServer-Blogs-Components-WeblogFiles/00-00-00-99-37-metablogapi/3583.clip_5F00_image002_5F00_3858A3E4.jpg
http://blogs.msdn.com/b/sqlazure/archive/2010/05/27/10016392.aspx

From\To (ms)
North-

central US

South-

central US

North

Europe
West Europe East Asia

South-East

Asia

North-central US 5 47 101.3 112.1 198.8 227.2

South-central US 39.6 13.7 121 116.9 181.1 209.6

North Europe 104.5 122.8 4.5 28.9 287.7 317.3

West Europe 119.7 127.2 29.8 5.8 310.8 341.4

East Asia 202.7 196.2 290.3 317.8 1.9 33.5

South-East Asia 230.8 230 318 350.2 32.8 2.2

Average Latency (ms) 5.0

Fastest Latency (ms) 1.9

Slowest Latency (ms)
350.2

• Server cursors cache results at server side and waits for
clients to fetch and process data.

• Client cursors are implemented by caching all the result set
rows on the client.

• Azure data center latency magnifies server cursor slow
performance.

• The query below uses a server-side cursor to iterate
through and retrieve 16,900 records (the entire table). 5 secs
(on-premise) vs 50 secs (Azure)

• SELECT t.ID, t. RECORD FROM Customer_MVMT t

• --Switch to Client side cursor and/or increase fetch batch size

• Uses 3rd-party framework for data access – single threaded

• Chatty behavior – Retrieve single value multiple times for
one line item entry

• Moving to VM to mitigate the latency

• App server & SQL server are closer

• VM local disk cache

• In the long term implement client caching via EF (Entity
Framework)

Azure VM Azure Storage

App

Server
Attached

Disk
SQL Server

Memory

Pool

Local Disk

Cache

Chatty Application 2 test result - 20 Line Items Processed

Laptop

Client

Seattle Azure US North Data Center

Azure StorageAzure VM

Role
App

Server

Azure VM

SQL Server
Memory

Pool

Local Disk

Cache

Laptop

Client

Seattle Azure US North Data Center

• App Server and DB Server are in the same box.

• Test Result: 110 seconds (avg)

• AppServer and DB Server are in two separate VMs.

• Test Result: 150 seconds (avg)

Azure VM SQL Azure

App

Server
DB

Data

Laptop

Client

Seattle Azure US North Data Center

• DB Data is SQL Azure..

• Test Result: 240 seconds (avg)

(Internal IP)

Attached

Disk

• Architecture produces ad-hoc queries to
maintain a platform neutral database
and a flexible framework.

• Tens of thousands of individual SQL
queries may be issued in the process of
opening a single 3D object for viewing
or editing

• Recommendation: Batching up Ad-hoc
queries

24

Azure architecture is based on scale-out
Composing multiple scale units to build large systems

25

Azure Compute

(Web, Worker, IaaS)

• 1-8 CPU cores

• 2-14 GB RAM

• 5-800 Mbps network

Azure Storage

• 100 TB storage (max)

• 5000 operations / sec

• 3 Gbps

Azure SQL Database

• 150 GB

• 305 threads

• 400 concurrent reqs

Azure Cloud Service

Lo
a

d
 B

a
la

n
ce

r

Windows

Azure SQL

Database

Web
Role

Worker
Role

26

Aspect Partitioning Capacity

Web role Low state

Automatic (via load

balancer)

Round-robin

Add more

instances (easy)

SQL

Database

High state

Manual (via app

code)

Choose

partitioning

function

Add more

databases

27

mailto:davida@contoso.com
mailto:jaredc@contosco.com
mailto:suec@contosco.com
mailto:simonm@contoso.com
mailto:richard@contosco.com

28

SQL

Database

Table

Storage

Blob

Storage

mailto:davida@contoso.com
mailto:jaredc@contosco.com
mailto:suec@contosco.com
mailto:simonm@contoso.com
mailto:richard@contosco.com

29

SQL

Database

Table

Storage

Blob

Storage

mailto:davida@contoso.com
mailto:jaredc@contosco.com
mailto:suec@contosco.com
mailto:simonm@contoso.com
mailto:richard@contosco.com

30

1
• Select the partition key

2

• Convert partition key to a partition

value (optional)

3

• Map partition value to a logical

partition

4

• Map logical partition to physical

resource

31

1

• The user (user ID) is a natural partitioning

key; all workloads are user-centric

2

• Use a non-cryptographic hash to convert

the user ID to an integer value

3

• Map a range of integers to a logical

“shard”

4

• Map logical “shard” to physical resource

(database)

639837447

639837447))

32

Database as a container
Logical shard occupies a single database.

Pros: high isolation, simple mapping (isolated to connection string),

Cons: density (for small tenants) and capacity (very large tenants),
rebalancing (1:1 map)

Schema as a container
Logical shard occupies a distinct schema in a database.

Pros: medium isolation, density (multiple tenants per database)

Cons: data layer mapping (need to dynamically generate and inject schema
context)

Table as a container (“no container”)
Purely logical isolation (tenant / customer ID column)

Pros: high density

Cons: data layer mapping (need to associate tenant ID with all per-tenant
usage)33

34

-789794523

Shard: 1

-1288490190:-429496730

35

-789794523

Shard: 27

36

-789794523

Shard: 2

Read,

Explore and

Re-discover

the Story

Reflect and

Share your

experience

Play and

participate

in the

Story

Buy and

give the

Story

1
2

3

4

• Harry Potter Online Experience

• Why Cloud?
• Original Beta Launch July 2011 on-premises solution

• 4.2M Page views < 2 minutes

• 1M Registrations < 10 hours

• Could not scale easily

• Target User Base
• Unknown popularity, estimated ~20M users

• Since port to Azure - Open to all
• 1 billion page views in first 2 weeks

• ~15K Registrations/day

• >5M signups

• Peak ~84K concurrent users, now 25K

• Silent Launch: on April 14, 2012 and for 2nd book in July, 2012

• Pottermore = Very Happy CTO “Overwhelmed by support
from Microsoft”

Web *

(Web Role)

App *

(Web Role)

Distributed Cache

(Worker Role) Cache Builder

(Worker Role)

Users

Federated by UserID

• Activities

• Comments

• Games (Wins)

• Others….

Shared Feeds

• Great Hall

• Common Room

• Others… Cache Builder

• OnStart: Content

• OnTime – Shared Feeds

• 30 to 120 seconds

Stateless application servers

serving to web site…

Email Sender

(Worker Role)

Job Scheduler

(Worker Role)

Email Proxy

RMF

Database

(Sharded SQL)

(*) Web and App Server hosted together –

different App Pools

All User Data

• Profile

• Friends

• Inventory

• Games

• Others…
Local Cache

External SystemOn-Premise

Write Only

Content

• Taxonomy

• Resources

<user_id>

Session State

(Cookie)

Pottermore Architecture

