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What is Service Bus?

Integration
Routing
Coordination
Transformation

Connectivity Messaging
Service Relay Queuing
Protocol Tunnel Pub/Sub
Eventing Reliable Transfer

Svc Management
Naming, Discovery
Monitoring

Rich options for Reliable, Consistent Content-based
interconnecting transaction-aware management routing, document
apps across cloud messaging  surface and service transformation, and
network boundaries infrastructure for observation process

business apps. capabilities coordination.
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Connectivity
Service Relay
Protocol Tunnel
Eventing

Integration
Svc Management Routing
Naming, Discovery Coordination
Monitoring Transformation

Rich options for Reliable, Consistent Content-based
interconnecting transaction-aware management routing, document
apps across cloud messaging surface and service transformation, and
network infrastructure for observation process

boundaries business apps. capabilities coordination.
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Brokered Transtfer

0 Lu o
= Load Leveling

= Recelver receives and processes at its own pace
and can never be overloaded

= Can add receivers as queue length grows, reduce
receiver if queue length is low or zero

= Gracefully handles traffic spikes by never
stressing out the backend.

= Offline/Batch

= Allows taking the receiver offline for servicing or
other reasons. Requests are buffered up until the
receiver is available again.
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Competing Consumer

= Load Balancing

= Multiple receivers compete for messages on the
same queue (or subscription).

= Provides automatic load balancing of work to
receivers volunteering for jobs.

= Observing the queue length allows to determine
whether more receivers are required.
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= Message Distribution

= Each receiver gets its own copy of each message.
Subscriptions are independent.

= Allows for many independent 'taps’ into a message
stream. Subscriber can filter down by interest.



Taps and Fan-Out

= Message Distribution

= Each receiver gets its own copy of each message.
Subscriptions are independent.

= Allows for many independent 'taps’ into a message
stream. Subscriber can filter down by interest.
= Constrained Message Distribution (Partitioning)

= Receiver get mutually exclusive slices of the message
stream by creating appropriate filter expressions.



cnterprise Integration Patterns

http://www.eaipatterns.com/
by Gregor Hohpe

ENTERPRISE 3 %
INTEGRATION &
PATTERNS

GREGOR Hompi
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DRAFT COVER as of 7/1
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Need for integration

Custom built
Acquired from third parties
Part of legacy systems

They interact with the business
Common processes and data sharing needs to be supported = Integration

Different data types and formats
Different types of extensibility / states of modifications possible
Different application platforms and systems
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Common types of Integration

= [nformation portals

= Data replication

= Shared business function

= Service oriented architectures

= Distributed business processes

= Business-to-business integration
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Options for integration

allow systems to share data/state but not functionality
allow systems to share data/state but not functionality
enables shared functionality but tightly couples applications

Use messaging when you need to transfer packets of data
Frequently
Immediately
Reliably
Asynchronously
In customizable formats
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Messaging Concepts

= Channels — a virtual pipe that connects a
sender to a receiver

= Messages — an atomic packet for data that can
be transmitted on a channel

= Pipes & Filters — that perform certain actions
oNn messages

= Routing — allows the message to navigate the
channel topology

= Transformation — converts messages from one
format to another



Messaging Patterns

= Pyblish Subscribe

Content Based Router

Upao

-an-

Upao

Recipient List

N
ate/Read Separation

ate Notifications

Diagnostics / Statistics

Correlation



Publish-Sulbscribe

= Scenario

= Sender broadcasts event to all interested
receivers

= Common use-cases
= Event Notification




Create Topics and Subscriptions

Uri managementUri =

ServiceBusEnvironment.CreateServiceUri("sb",
ServiceBusNamespace,
string.Empty);

NamespaceManager namespaceManager =

new NamespaceManager(managementUri,
TokenProvider.CreateSharedSecretTokenProvider
(ServiceBusIssuerName,

ServiceBusIssuerKey));

TopicDescription mainTopic =
namespaceManager.CreateTopic(“topicName");

namespaceManager.CreateSubscription(“topicName",
“FirstSubscription");






Partitioning

Partld > 0 AND

Partld <= 272

Partld > 272 m
AND Partld <= "= »

ce “Sub_

Partld > 567

AND Partld <=
791

= Rule conditions form mutually exclusive ranges
= Allows partitioning-aware message distribution

= No need for sender to be aware of partitioning



Content-based router

= Scenario

= Route a message to different recipients based on
data contained in the message

= Common use-cases
= Order Processing Systems




Create Subscriptions with Rules (Filters)

TopicDescription mainTopic =
namespaceManager.CreateTopic(“topicName");

namespaceManager.CreateSubscription(“topicName",
“AuditSubscription");

namespaceManager.CreateSubscription(“topicName",
“CategorylSubscription”,
new SglFilter(“Category = 1"));

namespaceManager.CreateSubscription(“topicName",
“CategoryNotlSubscription”,
new SqlFilter(“Category <> 1"));

BrokeredMessage myMessage = new BrokeredMessage();
myMessage.Properties.Add(“Category”, 1);
or
myMessage.Properties.Add(“Category”, 2);
or
myMessage.Properties.Add(“Category”, 3);






Filtering

LIKE V%'

= Up to 2000 rules per topic
= Each matched rule yields a message copy
= SQL'92 expressions over message properties



Recipient List

= Scenario

= The sender wants to send the message to a list of
reciplents

= Common use-cases

= Order processing systems — route to specifs
vendors/departments




Create Rules (with SQL Filters)

TopicDescription mainTopic =
namespaceManager.CreateTopic(“topicName");

namespaceManager.CreateSubscription(“topicName",
“AuditSubscription”);

namespaceManager.CreateSubscription(T“topicName",
"FirstSubscription",
new SqlFilter("Address LIKE '%First%'"));

namespaceManager.CreateSubscription(T“topicName",
“SecondSubscription”,
new SglFilter("Address LIKE '%Second%'"));

BrokeredMessage myMessage = new BrokeredMessage();
myMessage.Properties.Add(“Address”, “First”);
or
myMessage.Properties.Add(“Address”, “Second”);
or
myMessage.Properties.Add(“Address”, “First,Second”);






= Concentrator

= Fan information into a single queue from a range
of data sources

= Multi-Stage Aggregration / Rollup

= Fan into a set of queues, perform
aggregation/roll-up/reduction and fan further.
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Update/Read Separation

= Reads on partitioned
stores

= All writes through
messages

= Distribution via fan-
out

= Trades timeliness and
iInstant feedback for
robustness and scale




Update Notification

Sub
|_Topic || Sub_

= Long-running workers seeded with state from a database
= QOther part of the system inserts new jobs into the database
= Notification routed via message (uni/multi) to trigger fetch



Diagnostics / Statistics

TTL = vary by severity

S

Error

Warning/Info

= Flow diagnostics events from backend services

= Vary TTL by severity. Verbose logs very short lived,
fatal error reports long-lived.

= Filter by severity or needs of different audiences



Correlation

Broker Message

" Reply Queue

Broker Messége
~Send Queue |

Reply Queue Name

Id {id}

= Correlation is required to set up
reply paths between sender and receiver.

= Three correlation models in Service Bus:
Message-correlation, subscription-
correlation, session-correlation
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Correlation in Service Bus

= Message Correlation (Queues)
= Originator sets Message- or Correlationld, Receiver copies it to reply
= Reply sent to Originator-owned Queue indicated by ReplyTo
= Originator receives and dispatches on Correlationld

= Subscription Correlation (Topics)
= Originator sets Message- or Correlationld, Receiver copies it to reply
= Originator has Subscription on shared reply Topic w/ rule covering Id
= Originator receives and dispatches on Correlationld

= Session Correlation
= QOriginator sets some Sessionld on outbound session

= Receiver reuses Sessionld for reply session
= Originator filters on known Sessionld using session receiver
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When use Which?

= Message Correlation (Queues)

= High throughput needs; work usually completes in
minimal time

= It's ok for the replying party to directly know of the reply
destination

= Subscription Correlation (Topics)
= Decoupling of replying party and destination

= Longer lived jobs that may require moving handling
between subscriptions by ways of moving rules

= Session Correlation
= Reliable multiplexed duplex communication



Sessions

Q..

= Work-Set Pinning

= Sessions allow pinning sets of related sets of
related messages to a particular receiver even
when using competing consumers.



Sessions — Creating Session-
Aware centities

namespaceManager.CreateQueue(
new QueueDescription(queueName)
{ RequiresSession = true });

namespaceManager.CreateSubscription(
new SubscriptionDescription(topicName,
subName)

{ RequiresSession = true });



Sessions — Sending Messages

var msg = new BrokeredMessage
{
Sessionld = sessionld,
Properties = {
{ "JobId", jobld },
{ "Result", result }

}
s



Sessions — Recelving Messages

var qc =
messagingFactory.CreateQueueClient(queueName);

var session =
replyQueueClient.AcceptMessageSession(sessionld);

var msg = session.Receive();






Session State

= Allows storing session state in Service Bus
= Size limit equivalent to one message (256KB)

= Enables Work Set pinning with safe failover to
secondary



Sessions — Storing Processing
State

var gc =
messggingFactory.CreateQueueClient(queueName);
var session =
replyQueueClient.AcceptMessageSession(sessionld);
var msg = session.Receive();

session.SetState(serializedProcessingState);






Re-sequencer

A statefull filter which collects and reorders messages

Get a stream of related but out-of-order messages back
into the correct order



Implementation

= Correlate messages with sessions ID Identity
sequence with a sequence ID property

= Use session state to store out-of-sequence
messages

= Defer out-of-sequence messages for a later
time
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Implementation

= Correlate messages with sessions ID Identity
sequence with a sequence ID property

= Use session state to store out-of-sequence
messages

= Defer out-of-sequence messages for a later
time




Deferring messages

if (sessionState.GetNextSequenceId() != messageld)

{

Console.WriteLine("Defering message: Category {0}, Message sequence
{1}", session.SessionId, messageld);

// Deferring the message, and setting sessions state.
// Note: Use transaction scope to ensure consistency
message.Defer();

sessionState.AddOutOfSequenceMessage(messageld,
message.SequenceNumber);

SetState(session, sessionState);

while (sessionState.GetNextOutOfSequenceMessage() != -1)
{
//Call back defered messages

Console.WritelLine("Calling back for deferred message: sequence {0}",
sessionState.GetNextSequenceld());
receivedMessage =
receiver.Receive(sessionState.GetNextOutOfSequenceMessage());

ProcessMessage(receivedMessage, ref sessionState, receiver);



Advanced Features



Transactions

G

Ll

= Local Transaction Support

= Create message batches that must only be sent
together and are not sent in case of a transfer
failure

= Enable transactional operations on a single
entity, e.g. receiving a message and deleting a
rule from a subscription or store session state

= No distributed Tx support



Transactions

using (TransactionScope scope = new
TransactionScope())

{

sender.Send(msgl);
sender.Send(msg2);

scope.Complete();



Time lo Live

Broker Message

Properties

Body

= Messages disappear once TTL expires

= TTL protects against stale information,
especially against clogging auxiliary
queues/topic with outdated info

= Diagnostics, audit, errors, update notifications,
statistics



Sending Messages (TTL)

var message = new BrokeredMessage(msgBody)
{
Messageld = msgld,

TimeToLive =
TimeSpan.FromMinutes(1)

s



Scheduling

Broker Message
Pro p ertie

= Scheduled messages appear at a certain
point in time

= Very nice way to implement a simple
distributed timer/scheduler.



Sending Messages
(Scheduled)

var message = new BrokeredMessage(msgBody)

{

MessageId = msgld,

ScheduledEnqueueTimeUtc =
DateTime.UtcNow.AddHours(2)

s



Dead-Lettering

= Allows safely discarding messages that
cannot be processed for any reason and
require some form of manual intervention.

= Discarded messages are available in the
dead-letter queue’

receivedMessage.DeadlLetter(
"UnableToProcess"”,
"Unrecoverable exception while processing");

QueueClient deadLetterClient =
messagingFactory.CreateQueueClient(
QueueClient.FormatDeadLetterPath(queueClient.Path),
ReceiveMode.ReceiveAndDelete);



Duplicate Detection

= Automatically detects duplicates (using the
message-id) on the Service Bus server side.

= Eliminates doubt on whether a message has
already been sent in case of
disconnects/retries

namespaceManager.CreateQueue(
new QueueDescription(queueName)
{
RequiresDuplicateDetection = true,
DuplicateDetectionHistoryTimeWindow =
TimeSpan.FromHours(1)

})s



Prefetch

= Optimized network behavior for high-throughput
scenarios

= Fetches 'n’ messages into the client even if the
client hasn’t yet explicitly called ‘Receive’

= May cause load imbalance and, potentially,

message loss or hoarding messages with expired
locks

QueueClient queueClient =

messagingFactory.CreateQueueClient(Program.QueueName,

ReceiveMode.PeeklLock);
queueClient.PrefetchCount = 560;



Resources

= MSDN Docs: http://msdn.microsoft.com/sb
= SDK: http://windowsazure.com
= Samples — http://servicebus.codeplex.com

= Blog: http://blogs.msdn.com/windowsazure

= Abhishek Lal:
http://abhishekrlal.wordpress.com/

= Clemens Vasters:

htt
= Wi
htt

n://blogs.msdn.com/clemensv/
| Perry:

0://blogs.msdn.com/willpe/
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