Microsoft®

15 From the Desktop to the Cloud
@ y Years of Turning Vision into Value

Hong Kong|2012 B

»

v
>
L :
»
*)
‘:,123 Microsoft* o, Microsoft* (\ 7=

£ ASQﬁLEe;rygrr‘zAmz & System Center2012 Q\; XS

Microsofs* Microsoft® o Microsoh Wicscaoh N Windows: Internet X 3) y ek
Exchange Lync Office O®VisualStudio £7Windows7 & Explorer & Wuncp:lo’ws Phone £y WindowsAzure ~~ SQLAzure

, f%ii y

tech-days
Hong Kong|2012

Microsoft®

What is Service Bus?

Integration
Routing
Coordination
Transformation

Connectivity Messaging
Service Relay Queuing
Protocol Tunnel Pub/Sub
Eventing Reliable Transfer

Svc Management
Naming, Discovery
Monitoring

Rich options for Reliable, Consistent Content-based
interconnecting transaction-aware management routing, document
apps across cloud messaging surface and service transformation, and
network boundaries infrastructure for observation process

business apps. capabilities coordination.

Service Bus Messaging

1B
Q v @ Q

Connectivity
Service Relay
Protocol Tunnel
Eventing

Integration
Svc Management Routing
Naming, Discovery Coordination
Monitoring Transformation

Rich options for Reliable, Consistent Content-based
interconnecting transaction-aware management routing, document
apps across cloud messaging surface and service transformation, and
network infrastructure for observation process

boundaries business apps. capabilities coordination.

Brokered Transtfer

o 3 o

Brokered Transtfer

= Load Leveling

Brokered Transtfer

- Load Leveling

= Receiver receives and processes at its own pace
and can never be overloaded

Brokered Transtfer

= Load Leveling

= Recelver receives and processes at its own pace
and can never be overloaded

= Can add recelvers as queue length grows, reduce
receiver if queue length is low or zero

Brokered Transtfer

<
= Load Leveling et

= Recelver receives and processes at its own pace
and can never be overloaded

= Can add recelvers as queue length grows, reduce
receiver if queue length is low or zero

= Gracefully handles traffic spikes by never
stressing out the backend.

Brokered Transtfer

<
= Load Leveling et

= Recelver receives and processes at its own pace
and can never be overloaded

= Can add recelvers as queue length grows, reduce
receiver if queue length is low or zero

= Gracefully handles traffic spikes by never
stressing out the backend.

= Offline/Batch

Brokered Transtfer

0 Lu o
= Load Leveling

= Recelver receives and processes at its own pace
and can never be overloaded

= Can add receivers as queue length grows, reduce
receiver if queue length is low or zero

= Gracefully handles traffic spikes by never
stressing out the backend.

= Offline/Batch

= Allows taking the receiver offline for servicing or
other reasons. Requests are buffered up until the
receiver is available again.

Competing Consumer

Competing Consumer

= Load Balancing

Competing Consumer

= Load Balancing

= Multiple receivers compete for messages on the
same queue (or subscription).

Competing Consumer

= Load Balancing

= Multiple receivers compete for messages on the
same queue (or subscription).

= Provides automatic load balancing of work to
receivers volunteering for jobs.

Competing Consumer

= Load Balancing

= Multiple receivers compete for messages on the
same queue (or subscription).

= Provides automatic load balancing of work to
receivers volunteering for jobs.

= Observing the queue length allows to determine
whether more receivers are required.

Taps and Fan-Out

Taps and Fan-Out

= Message Distribution

= Each receiver gets its own copy of each message.
Subscriptions are independent.

= Allows for many independent 'taps’ into a message
stream. Subscriber can filter down by interest.

Taps and Fan-Out

= Message Distribution

= Each receiver gets its own copy of each message.
Subscriptions are independent.

= Allows for many independent 'taps’ into a message
stream. Subscriber can filter down by interest.
= Constrained Message Distribution (Partitioning)

= Receiver get mutually exclusive slices of the message
stream by creating appropriate filter expressions.

cnterprise Integration Patterns

http://www.eaipatterns.com/
by Gregor Hohpe

ENTERPRISE 3 %
INTEGRATION &
PATTERNS

GREGOR Hompi
Bospy WOOLF

DRAFT COVER as of 7/1

Need for integration

Need for integration

" Enterprises typically comprised of hundreds of
applications

= Custom built
= Acquired from third parties
= Part of legacy systems

Need for integration

" Enterprises typically comprised of hundreds of
applications

= Custom built
= Acquired from third parties
= Part of legacy systems

= Customers do not think about these system
boundaries

= They interact with the business
= Common processes and data sharing needs to be supported = Integration

Need for integration

Custom built
Acquired from third parties
Part of legacy systems

They interact with the business
Common processes and data sharing needs to be supported = Integration

Different data types and formats
Different types of extensibility / states of modifications possible
Different application platforms and systems

Common types of Integration

Common types of Integration

Common types of Integration

Common types of Integration

= [nformation portals
= Data replication

= Shared business function

Common types of Integration

= [nformation portals
= Data replication
= Shared business function

m Service oriented architectures

Common types of Integration

= [nformation portals

= Data replication

= Shared business function

= Service oriented architectures

= Distributed business processes

Common types of Integration

= [nformation portals

= Data replication

= Shared business function

= Service oriented architectures

= Distributed business processes

= Business-to-business integration

Options for integration

Options for integration

allow systems to share data/state but not functionality

Options for integration

allow systems to share data/state but not functionality

allow systems to share data/state but not functionality

Options for integration

allow systems to share data/state but not functionality
allow systems to share data/state but not functionality

enables shared functionality but tightly couples applications

Options for integration

allow systems to share data/state but not functionality
allow systems to share data/state but not functionality
enables shared functionality but tightly couples applications

Use messaging when you need to transfer packets of data
Frequently
Immediately
Reliably
Asynchronously
In customizable formats

Messaging Concepts

Messaging Concepts

= Channels — a virtual pipe that connects a
sender to a receliver

Messaging Concepts

= Channels — a virtual pipe that connects a
sender to a receiver

= Messages — an atomic packet for data that can
be transmitted on a channel

Messaging Concepts

= Channels — a virtual pipe that connects a
sender to a receiver

= Messages — an atomic packet for data that can
be transmitted on a channel

= Pipes & Filters — that perform certain actions
oNn messages

Messaging Concepts

= Channels — a virtual pipe that connects a
sender to a receiver

= Messages — an atomic packet for data that can
be transmitted on a channel

= Pipes & Filters — that perform certain actions
oNn messages

= Routing — allows the message to navigate the
channel topology

Messaging Concepts

= Channels — a virtual pipe that connects a
sender to a receiver

= Messages — an atomic packet for data that can
be transmitted on a channel

= Pipes & Filters — that perform certain actions
oNn messages

= Routing — allows the message to navigate the
channel topology

= Transformation — converts messages from one
format to another

Messaging Patterns

= Pyblish Subscribe

Content Based Router

Upao

-an-

Upao

Recipient List

N
ate/Read Separation

ate Notifications

Diagnostics / Statistics

Correlation

Publish-Sulbscribe

= Scenario

= Sender broadcasts event to all interested
receivers

= Common use-cases
= Event Notification

Create Topics and Subscriptions

Uri managementUri =

ServiceBusEnvironment.CreateServiceUri("sb",
ServiceBusNamespace,
string.Empty);

NamespaceManager namespaceManager =

new NamespaceManager(managementUri,
TokenProvider.CreateSharedSecretTokenProvider
(ServiceBusIssuerName,

ServiceBusIssuerKey));

TopicDescription mainTopic =
namespaceManager.CreateTopic(“topicName");

namespaceManager.CreateSubscription(“topicName",
“FirstSubscription");

Partitioning

Partld > 0 AND

Partld <= 272

Partld > 272 m
AND Partld <= "= »

ce “Sub_

Partld > 567

AND Partld <=
791

= Rule conditions form mutually exclusive ranges
= Allows partitioning-aware message distribution

= No need for sender to be aware of partitioning

Content-based router

= Scenario

= Route a message to different recipients based on
data contained in the message

= Common use-cases
= Order Processing Systems

Create Subscriptions with Rules (Filters)

TopicDescription mainTopic =
namespaceManager.CreateTopic(“topicName");

namespaceManager.CreateSubscription(“topicName",
“AuditSubscription");

namespaceManager.CreateSubscription(“topicName",
“CategorylSubscription”,
new SglFilter(“Category = 1"));

namespaceManager.CreateSubscription(“topicName",
“CategoryNotlSubscription”,
new SqlFilter(“Category <> 1"));

BrokeredMessage myMessage = new BrokeredMessage();
myMessage.Properties.Add(“Category”, 1);
or
myMessage.Properties.Add(“Category”, 2);
or
myMessage.Properties.Add(“Category”, 3);

Filtering

LIKE V%'

= Up to 2000 rules per topic
= Each matched rule yields a message copy
= SQL'92 expressions over message properties

Recipient List

= Scenario

= The sender wants to send the message to a list of
reciplents

= Common use-cases

= Order processing systems — route to specifs
vendors/departments

Create Rules (with SQL Filters)

TopicDescription mainTopic =
namespaceManager.CreateTopic(“topicName");

namespaceManager.CreateSubscription(“topicName",
“AuditSubscription”);

namespaceManager.CreateSubscription(T“topicName",
"FirstSubscription",
new SqlFilter("Address LIKE '%First%'"));

namespaceManager.CreateSubscription(T“topicName",
“SecondSubscription”,
new SglFilter("Address LIKE '%Second%'"));

BrokeredMessage myMessage = new BrokeredMessage();
myMessage.Properties.Add(“Address”, “First”);
or
myMessage.Properties.Add(“Address”, “Second”);
or
myMessage.Properties.Add(“Address”, “First,Second”);

= Concentrator

= Fan information into a single queue from a range
of data sources

= Multi-Stage Aggregration / Rollup

= Fan into a set of queues, perform
aggregation/roll-up/reduction and fan further.

Update/Read Separation

Update/Read Separation

= Reads on partitioned
stores

= All writes through
messages

= Distribution via fan-
out

= Trades timeliness and
iInstant feedback for
robustness and scale

Update Notification

Sub
|_Topic || Sub_

= Long-running workers seeded with state from a database
= QOther part of the system inserts new jobs into the database
= Notification routed via message (uni/multi) to trigger fetch

Diagnostics / Statistics

TTL = vary by severity

S

Error

Warning/Info

= Flow diagnostics events from backend services

= Vary TTL by severity. Verbose logs very short lived,
fatal error reports long-lived.

= Filter by severity or needs of different audiences

Correlation

Broker Message

" Reply Queue

Broker Messége
~Send Queue |

Reply Queue Name

Id {id}

= Correlation is required to set up
reply paths between sender and receiver.

= Three correlation models in Service Bus:
Message-correlation, subscription-
correlation, session-correlation

Correlation in Service Bus

Correlation in Service Bus

= Message Correlation (Queues)
= Originator sets Message- or Correlationld, Receiver copies it to reply
= Reply sent to Originator-owned Queue indicated by ReplyTo
= Originator receives and dispatches on Correlationld

Correlation in Service Bus

= Message Correlation (Queues)
= Originator sets Message- or Correlationld, Receiver copies it to reply
= Reply sent to Originator-owned Queue indicated by ReplyTo
= Originator receives and dispatches on Correlationld

= Subscription Correlation (Topics)
= Originator sets Message- or Correlationld, Receiver copies it to reply
= Originator has Subscription on shared reply Topic w/ rule covering Id
= Originator receives and dispatches on Correlationld

Correlation in Service Bus

= Message Correlation (Queues)
= Originator sets Message- or Correlationld, Receiver copies it to reply
= Reply sent to Originator-owned Queue indicated by ReplyTo
= Originator receives and dispatches on Correlationld

= Subscription Correlation (Topics)
= Originator sets Message- or Correlationld, Receiver copies it to reply
= Originator has Subscription on shared reply Topic w/ rule covering Id
= Originator receives and dispatches on Correlationld

= Session Correlation
= QOriginator sets some Sessionld on outbound session

= Receiver reuses Sessionld for reply session
= Originator filters on known Sessionld using session receiver

When use Which?

When use Which?

= Message Correlation (Queues)

= High throughput needs; work usually completes in
minimal time

= It's ok for the replying party to directly know of the reply
destination

When use Which?

Message Correlation (Queues)

= High throughput needs; work usually completes in
minimal time

= It's ok for the replying party to directly know of the reply
destination

Subscription Correlation (Topics)

= Decoupling of replying party and destination

= Longer lived jobs that may require moving handling
between subscriptions by ways of moving rules

When use Which?

= Message Correlation (Queues)

= High throughput needs; work usually completes in
minimal time

= It's ok for the replying party to directly know of the reply
destination

= Subscription Correlation (Topics)
= Decoupling of replying party and destination

= Longer lived jobs that may require moving handling
between subscriptions by ways of moving rules

= Session Correlation
= Reliable multiplexed duplex communication

Sessions

Q..

= Work-Set Pinning

= Sessions allow pinning sets of related sets of
related messages to a particular receiver even
when using competing consumers.

Sessions — Creating Session-
Aware centities

namespaceManager.CreateQueue(
new QueueDescription(queueName)
{ RequiresSession = true });

namespaceManager.CreateSubscription(
new SubscriptionDescription(topicName,
subName)

{ RequiresSession = true });

Sessions — Sending Messages

var msg = new BrokeredMessage
{
Sessionld = sessionld,
Properties = {
{ "JobId", jobld },
{ "Result", result }

}
s

Sessions — Recelving Messages

var qc =
messagingFactory.CreateQueueClient(queueName);

var session =
replyQueueClient.AcceptMessageSession(sessionld);

var msg = session.Receive();

Session State

= Allows storing session state in Service Bus
= Size limit equivalent to one message (256KB)

= Enables Work Set pinning with safe failover to
secondary

Sessions — Storing Processing
State

var gc =
messggingFactory.CreateQueueClient(queueName);
var session =
replyQueueClient.AcceptMessageSession(sessionld);
var msg = session.Receive();

session.SetState(serializedProcessingState);

Re-sequencer

A statefull filter which collects and reorders messages

Get a stream of related but out-of-order messages back
into the correct order

Implementation

= Correlate messages with sessions ID Identity
sequence with a sequence ID property

= Use session state to store out-of-sequence
messages

= Defer out-of-sequence messages for a later
time

o 30—

Implementation

= Correlate messages with sessions ID Identity
sequence with a sequence ID property

= Use session state to store out-of-sequence
messages

. Deferout—of—seque sages for a later
time N

- -

Implementation

= Correlate messages with sessions ID Identity
sequence with a sequence ID property

= Use session state to store out-of-sequence
messages

= Defer out-of-sequence messages for a later
tl me I\O/Il;.t—Of—Seq:

Implementation

= Correlate messages with sessions ID Identity
sequence with a sequence ID property

= Use session state to store out-of-sequence
messages

= Defer out-of-sequence messages for a later
time

Deferring messages

if (sessionState.GetNextSequenceId() != messageld)

{

Console.WriteLine("Defering message: Category {0}, Message sequence
{1}", session.SessionId, messageld);

// Deferring the message, and setting sessions state.
// Note: Use transaction scope to ensure consistency
message.Defer();

sessionState.AddOutOfSequenceMessage(messageld,
message.SequenceNumber);

SetState(session, sessionState);

while (sessionState.GetNextOutOfSequenceMessage() != -1)
{
//Call back defered messages

Console.WritelLine("Calling back for deferred message: sequence {0}",
sessionState.GetNextSequenceld());
receivedMessage =
receiver.Receive(sessionState.GetNextOutOfSequenceMessage());

ProcessMessage(receivedMessage, ref sessionState, receiver);

Advanced Features

Transactions

G

Ll

= Local Transaction Support

= Create message batches that must only be sent
together and are not sent in case of a transfer
failure

= Enable transactional operations on a single
entity, e.g. receiving a message and deleting a
rule from a subscription or store session state

= No distributed Tx support

Transactions

using (TransactionScope scope = new
TransactionScope())

{

sender.Send(msgl);
sender.Send(msg2);

scope.Complete();

Time lo Live

Broker Message

Properties

Body

= Messages disappear once TTL expires

= TTL protects against stale information,
especially against clogging auxiliary
queues/topic with outdated info

= Diagnostics, audit, errors, update notifications,
statistics

Sending Messages (TTL)

var message = new BrokeredMessage(msgBody)
{
Messageld = msgld,

TimeToLive =
TimeSpan.FromMinutes(1)

s

Scheduling

Broker Message
Pro p ertie

= Scheduled messages appear at a certain
point in time

= Very nice way to implement a simple
distributed timer/scheduler.

Sending Messages
(Scheduled)

var message = new BrokeredMessage(msgBody)

{

MessageId = msgld,

ScheduledEnqueueTimeUtc =
DateTime.UtcNow.AddHours(2)

s

Dead-Lettering

= Allows safely discarding messages that
cannot be processed for any reason and
require some form of manual intervention.

= Discarded messages are available in the
dead-letter queue’

receivedMessage.DeadlLetter(
"UnableToProcess"”,
"Unrecoverable exception while processing");

QueueClient deadLetterClient =
messagingFactory.CreateQueueClient(
QueueClient.FormatDeadLetterPath(queueClient.Path),
ReceiveMode.ReceiveAndDelete);

Duplicate Detection

= Automatically detects duplicates (using the
message-id) on the Service Bus server side.

= Eliminates doubt on whether a message has
already been sent in case of
disconnects/retries

namespaceManager.CreateQueue(
new QueueDescription(queueName)
{
RequiresDuplicateDetection = true,
DuplicateDetectionHistoryTimeWindow =
TimeSpan.FromHours(1)

})s

Prefetch

= Optimized network behavior for high-throughput
scenarios

= Fetches 'n’ messages into the client even if the
client hasn’t yet explicitly called ‘Receive’

= May cause load imbalance and, potentially,

message loss or hoarding messages with expired
locks

QueueClient queueClient =

messagingFactory.CreateQueueClient(Program.QueueName,

ReceiveMode.PeeklLock);
queueClient.PrefetchCount = 560;

Resources

= MSDN Docs: http://msdn.microsoft.com/sb
= SDK: http://windowsazure.com
= Samples — http://servicebus.codeplex.com

= Blog: http://blogs.msdn.com/windowsazure

= Abhishek Lal:
http://abhishekrlal.wordpress.com/

= Clemens Vasters:

htt
= Wi
htt

n://blogs.msdn.com/clemensv/
| Perry:

0://blogs.msdn.com/willpe/

Microsoft

© 2012 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

