

Hands-On Lab

Developing Robust and Reliable
Applications with Microsoft Visual Studio
2005 Team System

Visual Studio Team System

To help IT teams become top performers, Microsoft® needs to do more than provide
developer tools…we need to provide development tools.

To that end, we are expanding the Visual Studio product line to include new tools for
a variety of roles in the IT lifecycle.

Microsoft’s announcements around Team System include…

Visual Studio® Team System, an extensible lifecycle tools platform that
significantly expands the Visual Studio product line and helps software teams
collaborate to reduce the complexity of delivering modern service-oriented solutions
Microsoft’s offerings now include a comprehensive set of proven process
frameworks, best practices, prescriptive architecture guidance, and integrated
lifecycle tools that enable IT organizations to successfully deliver custom solutions on
the Microsoft Windows® platform

The following diagram shows all aspects of Visual Studio 2005 Team System; all of
these components are part of this lab.

Numerous industry partners have agreed to extend our lifecycle tools:

GSIs: Accenture, Avanade, Capgemini, EDS, Fujitsu, Unisys

ISVs: Amberpoint, Avicode, Borland, Compuware, Serena Telelogic

With Visual Studio Team System, organizations can:

• Reduce the complexity of delivering modern service-oriented solutions that
are designed for operations

• Facilitate collaboration among all members of a software team (including
architects, developers, testers, and operations managers), speeding
development time and ensuring the predictability and reliability of the
development process

• Customize and extend the Team System with their own internal tools and
process frameworks or choose from over 450 supplemental products from
over 190 partners

Before you begin

Visual Studio Team System makes heavy use of XML Web Services; these web
services are hosted in Internet Information Services (IIS). Sometimes on a VPC, IIS
can be lead into a corrupt state, it is best to restart this service before your lab.

Actions From the Start menu, choose the Run option as shown

Actions Type iisreset and press OK

Now we are ready to start Visual Studio 2005 Team System; all aspects of Visual
Studio 2005 Team System are installed on this VPC.

Actions Double-click the Microsoft Visual Studio 2005 Beta 2 desktop short cut to

start Visual Studio 2005 Team System

Actions Open the AdventureWorks solution from the File -> Recent Projects

menu option

Actions Open the AdventureWorks solution from the File -> Recent Projects

menu option

Actions Right-click on the Messenger icon on the Windows Task Bar

Choose Sign In; it will take a few moments to sign-in

What we will do in this lab

Adventure Works is an online retailer of sporting goods; in order to stay ahead of the
competition, Adventure Works is striving to make sure their customer’s get the most
interactive and friendly experience possible.

One aspect of this effort is to send a personalized IM message to each customer that
makes a purchase.

The goal of this lab will be to plan, design, implement and test this feature using
Visual Studio 2005 Team System.

Format of this lab

This lab contains the following exercises:

Exercise - Syncing up with your Team
Exercise - Test Driven Development
Exercise Adding our work to Source Control
Exercise - Code Analysis
Exercise - Custom Check-in Policy
Exercise - Implement Architecture
Exercise - Web Testing
Exercise - Data Driven Testing
Exercise - Validating a Web Test
Exercise - Load Testing

Doing all of these exercises will likely take longer than 60
minutes, so please feel free to pick and choose the ones that
interest you.

These exercises can be done sequentially or individually in any order. Instructions in
each section will indicate if any prerequisite sections are required. Generally
speaking, most of these sections can stand alone.

The following conventions are used in this lab.

Text in this format is for instructions and background information related to a lab or
exercise.

In each exercise, each step has an associated screen shot. These steps are
formatted as follows:

Actions The tasks that you have to perform in this step are listed here; there can be

one or more tasks listed

A screen shot of the most significant action is shown here.

Good luck, and have fun with Visual Studio 2005 Team System!

Exercise - Syncing up with your Team

Visual Studio Team System was designed to integrate and bring productivity to all f
the disciplines in a typical software lifecycle.

In this lab, we will concentrate mainly on the Developer and Test roles.

As a developer or tester, one of the best ways to ensure that you are writing robust
and reliable software is to make sure you are on the same page with the rest of your
team.

In this short section, we will demonstrate how a developer can use Visual Studio
Team System to view a list of work items that are assigned to them.

Work items are very pervasive in Visual Studio Team System – see HOL189 for an
example of how a project manager might create a set of work items.

Actions Click on the Team Explorer tab

Actions Double-click on HandsOnLab -> Work Items -> Project Queries -> My

Work Items

Actions Double-click on the Create IM Component work item

Actions Click on the Details tab

Remaining Work allows us to estimate how much effort is left in this task – the unit
of this data point depends on the organization you are working in.

Actions Set the Remaining Work value to 1

Actions Save this task using the File -> Save Task 55 menu option

We have assigned a work item to ourselves, so we are all set to start our
development work.

By assigning this task to ourselves, the rest of our team knows that we are working
on this task, so no effort is wasted.

In the next section, we will use an interesting approach to development called Test
Driven Development.

Exercise - Test Driven Development

We will house our core IM-sending functionality into a component. We expect this
component to be used by many other groups in the company, so it is crucial that we
come up with a good design.

To help us come up with an intuitive design, let’s forget for a moment about writing
the component. Instead, let’s think about how a user would want to use our
component to send a message.

This approach is commonly known as ‘Test Driven Development’.

Visual Studio 2005 Team System supports many different types of development;
everything from very structure approaches like ‘Test Driven Development’, to
traditional, free-form development. Visual Studio Team System supports all of these
approaches equally well.

This section of our lab is meant to be a very gentle introduction to ‘Test Driven
Development’; die-hard followers of this approach will recognize this right away,
please be patient.

Our first step is to create the test for the code that we want to write. Visual Studio
Team System introduces a dedicated project type to house tests.

Actions

Click on the Solution Explorer tab

Actions Select the AdventureWorks solution node and right-click

choose the Add -> New Project menu option

Actions Expand the Visual C# node

Actions Select the Test node

Actions Select the Test Project node
Press the OK button

Actions Watch as your Test Project is added to Source Code Control

Actions Now that our test project has been created, let’s look at the test code that

was generated for us.

Select the Solution Explorer tab

Actions The files shown are part of your new Test Project

Actions Select the TestProject1 node and choose the View Class Designer menu

option

Actions Your UnitTest1 class should be visualized

Actions The Class Designer allows me to visually design my class.

Click on the chevron to show the methods in UnitTest1

Actions Set the Zoom to 150%

Any change I make in the Class Designer is automatically reflected in my source
code. Let’s look at the Class Designer and the source code it represents side-by-
side.

Actions Choose the Window -> New Vertical Tab Group menu option

Actions Click on the UnitTest1.cs tab

Now I have both a visual representation of my class in the Class Designer, as well as
its source code. The Class Designer is really just another view onto the source code,
so any change I make is automatically reflected in my source code.

The following is an example

Actions Select the TestMethod1 method on the UnitTest1 class diagram

Actions With the TestMethod1 method selected, right-click and choose Properties

Actions The Property Grid will be visible, as shown

Actions Select the Name property

When we change the name of our method in the Class Designer, the source code is
automatically updated.

Actions Change this property to SendMessageTest

Any reference I made to this class by its old name will be updated; this combination
of visual class design and refactoring let’s me quickly get up to speed on existing
code bases and get productive right away.

Actions Visual Studio 2005 Team System will refactor all the references to this

method to reflect the new name

Actions Notice the changes in the Class Designer and source code

The first step is Test Driven Development (TDD) is to write a basic unit test that will
test the code that we intend to write. In this case, we will write the code to
instantiate a class called SipClient. This class will encapsulate the functionality that
we need to send IM messages.

Actions Insert the following lines of code into UnitTest1.cs:

Notification.SipClient sipClient = new
Notification.SipClient()

Now we are going to run our basic unit test – we know that this test won’t compile
because our SipClient class does not exist yet.

One of the tenets behind TDD is to write your test, have it fail, and then write just
enough code to allow it to pass. As you iterate over this cycle, you start to build the
functionality behind your class.

Actions Click on the Test View as shown

Actions Select the SendMessageTest unit test

Actions Press the Run Tests tool bar button as shown

Our test will fail as expected since it does not compile – we have not written our
SipClient class yet.

Actions Press the No button in this dialog

Actions Watch as your test progresses

Actions It will fail as expected

Now we are going to write just enough code to allow our unit test to pass. That
means creating the new project that will house our SipClient class.

Actions Click on the Solution Explorer tab

Actions Right-click on the Solution node and choose Add -> New Project

Actions Select the Visual C# node

Actions Select the Class Library project type

Actions Name your new project Notification

Press the OK button

Actions Notice the Notification project that has been added to your solution

We will use the Class Designer again to create our SipClient class. In this case, we
will just rename the default class that was created for us to SipClient.

Once our class is created, we will add a reference from our new project to our test
project. This will allow our unit test to pass. This will be our first iteration of the
TDD approach.

Actions Right-click on this project node and choose the View Class Diagram menu

option

Actions Your new Class Diagram should be side-by-side with your previous one

Actions Set the Zoom to 150%

Actions Right-click on Class1 and choose Properties

Actions The Property Grid will be visible, as shown

Actions Scroll down to the Name property and select it

Change the name to SipClient

Actions Visual Studio 2005 Team System will refactor all the references to this

method to reflect the new name

Actions Notice the change in your Class Designer

Actions Select the TestProject1 node

Actions Right-click and choose Add Reference

Actions Click on the Projects tab

Actions Choose the Notification project

Press the OK button

We’ve completed our first iteration of TDD – we have written just enough code to
allow our unit test to pass. Let’s rerun our test again to ensure that it does indeed
pass.

Actions Press the Rerun link in the Test Results window

Actions This time the test should pass

Our test passes now, but it doesn’t really measure quality at this point. We are just
instantiating an empty class.

Now, we’ll go into the code behind our SendMessageTest and make it more
strenuous.

Actions Double-click on the SendMessageTest method in your Class Diagram

Actions Use the vertical splitter bar to give more room to the UnitTest1.cs file

This is where a TDD approach really pays off. Instead of thinking about how we
write a component to send IM messages, we can think about how we would want to
use such a component.

This is a very subtle change in the way we approach software development, but it
can yield surprisingly well-designed code.

The code that we will write in our unit test is for the method that we want to call to
send our IM message. We want to be able to specify:

 - The address of the IM server we want to use
 - The account of the sender
 - The password of the sender
 - Who the message is intended for
 - What the message is

Actions In the SendMessageTest method, insert the following code:

 string server = "192.168.2.100";
 string senderAccount = "administrator@tfs.local";
 string senderPassword = "P@ssw0rd";
 string recipientUri = "sip:tfsdev@tfs.local";
 string message = "Unit test succeeded!";
 target.SendMessage(server,
 senderAccount,
 senderPassword,
 recipientUri,
 message);

 Assert.AreEqual(true, true);

Actions Wrap your code with try/catch statements

Our test is complete at this point – we have the code to send an IM message, and if
there is an exception thrown, we will fail the test. Now it’s time to actually write the
code we need.

Actions Use the vertical splitter bar again to give both sides the same amount of

room as shown

Actions Right-click on the SipClient class and choose Class Details

Following TDD, we will write just enough code to allow our test to pass. So, we will
use Class Designer and create a method with a signature that matches our unit test.

Actions Click on the <add method> text

Actions Type SendMessage and Press the ENTER key

Actions Expand the SendMessage node

Actions Click on the <add parameter> text

Actions Type server and Press the ENTER key

Type senderAccount and Press the ENTER key
Type senderPassword and Press the ENTER key
Type recipientUri and Press the ENTER key
Type message and Press the ENTER key

Actions Your class diagram and code should look as shown

Actions Click on the chevron for your SipClient class diagram as shown

Actions Double-click on the SendMessage method

When the Class Designer generates a method for us, it puts in a ‘not implemented’
exception. We’ll remove this statement.

Now let’s run our test again.

Actions Remove the line of code as shown

Actions Click on the Test View tab

Actions Select the SendMessageTest item

Actions Press the Run Tests tool bar button

Actions Your test should pass again

This is our last iteration of TDD – we will write the actual code behind our
SendMessage method.

For the purpose of this hands on lab, this code has already been written for us. We
will open the existing file (SipClient.cs) and cut-and-paste its code into our class.

Actions Choose the File -> Open -> File menu option

Actions Press the Desktop button

Actions Choose the SipClient.cs file

Press the Open button

Actions When SipClient.cs opens, choose the Edit -> Select All menu option

Actions All of the text in SipClient.cs should be selected

Actions Choose the Edit -> Copy menu option

Actions Select the Class1.cs file as shown

Actions Choose the Edit -> Select All menu option

Actions All of the text in Class1.cs should be selected

Actions Choose the Edit -> Paste menu option

Actions This should paste real code into Class1.cs

All of our real IM sending code is written – now we need to add a reference to an
external library. This library provides the infrastructure that we need to
communicate with an IM server.

Actions Click on the Solution Explorer tab

Actions Select the Notification node

Actions Right-click and choose Add Reference

Actions Click on the Recent tab

Actions Select the RTCCORElib.dll item

Press the OK button

We have a real IM sending component written now; when we run our unit test this
time, we are actually going to execute it.

Actions Click on the Test View tab

Actions Select the SendMessageTest item

Actions Press the Run Tests tool bar button

Actions Watch as your tests run

Actions Your test should pass and an IM message should be sent!

Now we have a working IM component!

That was very quick introduction into ‘Test Driven Development’ (TDD). This
approach, while awkward at first, has a number of advantages.

Writing code from the perspective of the end-user almost always results in an
intuitive design. This code that you write can easily become your unit test. A more
thorough interpretation of TDD involves more iteration – you write only the code
needed to pass your test each time. This approach almost always results in a high
degree of code coverage.

Exercise Adding our work to Source Control

With our component written, it’s time to safe guard our work and add it to source
control. Visual Studio Team System’s source control is built from scratch to be
enterprise-ready.

Source control is a tightly integrated part of Visual Studio Team System; let’s check
in our changes and see this integration in action.

Actions Click on the Solution Explorer tab

Actions Choose View -> Pending Checkins menu option

Actions Press the Check In button

Visual Studio Team System’s source control is tightly integrated with check-in policy.
We can specify that certain conditions must be true before we are allowed to check
code in.

Check in policy can be used to help make sure your organization is following a
mandated development process.

Actions We’ve violated a couple of check in policies

Press the Cancel button in the Policy Failure dialog box

We haven’t run code analysis or associated work items with our changes, so we can’t
check our changes in yet.

Let’s take care of these policy violations, starting with the work items. We will
associate this check in with the work item that we started this hands on lab with.

Actions Press the Work Items button in the Policy Failure dialog box

Actions Press the Work Items button

Actions Select the My Work Items query under the HandsOnLabs project

Our work items policy has been satisfied, now let’s run code analysis to resolve the
second policy violation.

Code analysis is like a grammar checker for your source code; in the next section,
we will see how it can flush out potential problems in our source code.

Actions Select the Create IM Component task

Go back to the Policy Warnings and see that one violation has been
satisfied

Close the Pending Checkins dialog box – we are going to run Code
Analysis to resolve the remaining violation

Exercise - Code Analysis

Microsoft has learned some really good lessons about security over the years – these
lessons are integrated right into Visual Studio Team System.

We can build my project with Visual Studio Team System and have all of our source
code analyzed for me. Known problems, such as security problems, get flushed out
and shown to us.

Code analysis is an integrated part of Visual Studio Team System; we just have to
enable it for our project.

Actions Make sure that you have your http://localhost:2005/adventureworks

project selected.

Choose the Website -> Code Analysis Configuration menu option (the
Website menu is not shown until you select a web project)

Actions There are a number of code analysis rules that we can enable; in our case,

let’s enable all of them.

Select the Enable Code Analysis check box

Press OK

With code analysis enabled, we will rebuild our project. Instead of getting compiler
errors (if there are any), we will also get warnings about our source code where
common problematic patterns are being recognized.

Actions Choose the Build -> Build Web Site menu option

Actions Choose the View -> Other Windows -> Error List menu option

Actions The Error List shows all of the warnings that code analysis flushed out

We won’t fix all of these issues right now; the integration in Visual Studio Team
System allows us to quickly convert these warnings into bugs.

Visual Studio Team System will detect that we have run code analysis and allow our
check in to proceed.

Visual Studio Team System provides a set of very useful check in policies; this
mechanism is extensible as well. In the next section, we will create our own check in
policy and integrate it with Visual Studio Team System.

Actions Right-click on the warnings and choose Create Work Item -> Bug

Remember to save the bugs that you create

Actions Bring up the Pending Checkins dialog box again

If the code analysis warning is still there, select it, right-click and choose
Evaluate

Actions Press the Check In button again and wait for files to be added

Exercise - Custom Check-in Policy

One of the core design principles behind Visual Studio Team System was to design
its functionality as a platform, rather than just a product. This would allow
customers to tweak Team System to suite their organizations, as well as allow
partners to build their businesses upon Team System.

We will create a check in policy that makes sure we add a comment to each check in.

Creating custom check in policies is quite simple – they are simply .NET assemblies
that implement certain interfaces. Team System is made aware of these policies
through a registration mechanism.

Let’s start by creating our .NET assembly project.

Actions From the Solution Explorer right-click on your adventureworks solution

node and choose Add -> New Project

Actions Create a Visual C# -> Windows -> Class Library project

Actions Name this project CheckForCommentsPolicy

Press OK

Actions From the Solution Explorer right-click on your new CheckForComments

project and choose View Class Diagram

Actions Set the Zoom to 150%

Actions Rename your class from Class1 to CheckForComments

The interfaces that we need to implement to become a check in policy are exposed
through an object model that Team System provides. The Class Designer will help
us implement those interfaces by generating default implementations for us.

Let’s add a reference to the object model that we need, then we will implement the
required interfaces.

Actions Right-click on the Reference node under the CheckForCommentsPolicy

project node

Choose Add Reference

Actions Click on the Recent tab

Choose the Microsoft.VisualStudio.Hatteras.Client.dll file
Press OK

Actions Choose the View -> Class View menu option

Actions Expand the Microsoft.VisualStudio.Hatteras.Client nodes as shown

IPolicyDefinition and IPolicyEvaluation are the interfaces that we need; Class
Designer will help us implement them.

Actions Select IPolicyDefinition

Actions Drag it onto your design surface

Actions Select IPolicyEvaluation

Drag and drop it onto your design surface

Actions Select Inheritance on your Toolbox

Actions Your cursor should change into the icon shown below

Actions Press and hold your left mouse button

Make a dragging motion from CheckForComments to IPolicyDefinition

Actions CheckForComments should look as shown

Actions Do the same with IPolicyEvaluation

CheckForComments should look as shown below

Actions Select CheckForComments and choose View Code

Actions All of the methods for each of the interfaces you chose to implement are

stubbed out for you

Now we are going to implement the code behind these interfaces. Let’s start with
IPolicyDefinition.

Actions Select the code as shown

Actions Right-click and choose Insert Snippet…

Actions Choose Demo Snippets -> IPolicyDefinition Members

Actions IPolicyDefinition is now implemented

Each method has explanatory comments associated with it

Now let’s do the same thing for IPolicyEvaluation

Actions Find and select the IPolicyEvaluation members

Actions Right-click and choose Insert Snippet…

Choose Demo Snippets -> IPolicyEvaluation Members

Actions IPolicyEvaluation is now implemented

Each method has explanatory comments associated with it

There are a few more odds and ends we need to do to implement our check in policy.

Actions Put your cursor on the next line after the using System.Text; line

Right-click and choose Insert Snippet…

Actions Choose Demo Snippets -> Team Foundation Server SCM Namespace

Actions Your namespace inclusions should look as shown

Actions Right-click on the Reference node under the CheckForCommentsPolicy

project node

Choose Add Reference

Click on the .NET tab

Choose System.Windows.Forms

Press OK

Actions Choose the Build -> Build CheckForCommentsPolicy menu option

Actions Put your cursor in the location shown

Right-click and choose Insert Snippet…

Actions Choose Demo Snippets -> Mark as serializable

Actions The attribute as shown should be added to your code

Actions Your build should be successful

Once our policy has been built, we need to register it with Team Server. We have
the register entries already; we just need to run the .reg file.

Actions Go to your Desktop and double-click on the CheckForComments.reg file

Answer Yes and OK to the two dialogs that appear after you double-click

This will register your policy with Visual Studio Team System

Our custom check in policy is created and registered; now let’s add it to our source
control project.

We can test our new policy by trying to do a check in.

Actions From the Team Explorer right-click on the HandsOnLab node

Choose Team Project Settings -> Source Control…

Actions Click on the Checkin Policy tab

Actions Press New …

Our Check For Comments Policy should be listed

Select it and press OK

Actions This dialog box is really just an example of how you can add a user interface

to allow your policy to be configured.

Press Yes

Press OK to close the Source Control Settings dialog box

Actions Choose the View – Pending Checkins menu option

Actions Press Policy Warnings

Notice the two policy violations that you have; one of them is the policy that
we created

Actions Press Source Files

Enter a comment

Actions Press Policy Warnings again and notice that our new policy has been

satisfied

Note – If you still see a policy warning, right-click on it and choose
Evaluate

Actions Click on Work Items to find a work item to associate this check in to satisfy

our other check in policy as we did before.

This was a very simple example, but it illustrates the integration and extensibility
that is part of Visual Studio Team System. Check in policy is one of the many facets
of Team System that helps your whole team write more robust and reliable code in a
productive manner.

We have our IM component written, tested and checked in, now it’s time to flesh out
the rest of our application.

Exercise - Implement Architecture

This section of the lab is able to standalone, but you will have to use the default
implementation of the XML Web Service, rather than calling into the Notification
component if you did not complete the Exercise - Test Driven Development section.

So far, we’ve looked at traditional forms of writing robust code, but another aspect is
to writing robust and reliable software is being able to see where our code fits into
the bigger picture.

Team System helps us design our applications visually – as with the Class Designer,
the model and the source code is always kept in sync.

We will implement a new XML Web Service by taking its design, and generating the
code for an ASP.NET web service hosted in IIS.

Actions Switch to the AdventureWorks.ad file

Right-click on the NotificationService item and choose Properties

Actions In the Properties grid, select the Project property

Actions Change the value to http://localhost:2005/notifyservice

Actions Right-click on NotificationService and choose Implement Application…

Actions Press OK

It will take a few moments to generate your new project

Actions After NotificationService has been generated – you will see this error

This is a known issue in Beta 2 – the following actions are workarounds to
this issue

Actions Start Internet Information Services (IIS) Manager

Actions Find the NotificationService virtual directory and select it

Right-click and choose Properties

Actions Change the Execute Permissions property to Scripts and Executables

Press OK to close this dialog

Close Internet Information Services (IIS) Manager

Once our ASP.NET web service has been implemented, we will have a skeleton
project to work with. We will flesh out the operations of this web service to send IM
messages; we will use the IM component that we created earlier.

Actions Select the end point on adventureworks

Right-click and choose Implement

Actions Once the end point changes to the icon as shown, you have successfully

worked around the issue.

Actions Select the end point on the NotificationService

Right-click and choose View Code

Actions Inside the SendMessage method, right-click and choose Insert Snippet …

Actions Choose the Demo Snippets -> Send Message snippet

Actions Select the http://localhost:2005/NotificationService project

Right-click and choose Add Reference…

Actions Under the Projects tab, choose Notification and press OK

With our XML Web Service written, let’s give it a try. We can invoke XML Web
Services right within Internet Explorer.

Actions Select the NotificationService.asmx file, right-click and choose Set As

Start Page

Actions Choose the Debug -> Start Without Debugging menu option

Actions Press the SendMessage link

Actions Type Hello World and press the Invoke button

Actions You should get your IM message!

Close all your instances of Internet Explorer

Our XML Web Service is ready, so now we just have to hook it up to our ASP.NET
application.

Visual Studio Team System helps make this a productive process by generating all of
the web references we need. All we need to do is find the place where we want to
call our new web service.

Actions Select the shoppingcart.aspx file under your

http://localhost:2005/adventureworks/ project

Right-click and choose View Designer

Actions Double-click on the Check Out button

Actions Put your cursor in the location shown

Actions Right-click and choose Insert Snippet

Choose Demo Snippets -> Say Thanks!

With our code written, let’s try to use our new feature.

Actions Select http://localhost:2005/adventureworks

Right-click and choose Set as StartUp Project

Actions Choose the Debug -> Start Without Debugging menu option

Actions Press the Products tab

Actions Press the Add to Cart button

Actions Press the Check Out button

Actions You should get an IM thanking you for your purchase

We have verified the functionality of our application – now let’s make that
verification a part of our development process. Visual Studio Team System supports
the notion of a web test, which we will see in the following section.

Exercise - Web Testing

Visual Studio Team System supports a wide range of test types; we’ll create a web
test that allows us to record the way we use our application. We’ll be able to play it
back later.

Actions If you are doing this section of the lab independently, you will have to add a

Test Project to your solution; see the Exercise - Test Driven Development
for details.

Select your Test Project, right-click and choose Add -> Web Test

Actions When Internet Explorer opens, choose Favorites -> AdventureWorks

Actions Notice the window that will record your requests

Actions Click the Products tab

Actions Press the Add to Cart button

Actions Press the Check Out button

Actions Notice the IM message that is sent

Press the Stop button on the recording panel tool bar

Now we have a test that verifies the functionality of our web application; however,
there are a few problems with our test. Our test always buys the same item
(baseballs), it only represents one user, and we haven’t defined what a ‘pass’ or a
‘fail’ means.

We will address each of these problems in the following sections.

Exercise - Data Driven Testing

Almost all of the test types in Visual Studio Team System can be driven with data
pulled from a database. We are going to replace the hard coded ‘Team System
Baseball’ that we recorded with a value that we pull from a database.

Actions Right-click on the Product Name node and choose Properties

Actions Pull the value picker down for the Value option

Actions Choose the Add Data Source option

Actions Choose the Microsoft OLE DB Provider for SQL Server as the OLE DB

Provider

Actions Enter CAMTSVSTSSS01 as the Server or file name

Actions Select the Use Windows NT Integrated Security option

Enter CAMTSVSTSSS01 as the Initial Catalog (the image shown incorrectly
shows ‘AWorks’

Press the OK button

Actions Choose the tblProducts table

Press OK

Actions Select the first QueryString parameter again

Actions Pull down its value picker

Expand the CAMTSVSTSSS01 node and choose the ProductName value

Run

Actions In the Test View panel, select your web test and press Run Tests

Your test should pass – you should see a different item purchased; if you
don’t try running the test again.

Now our tests run with more realistic data, we still need to define whether our test
passes or fails. In order to do that, we have to inspect the response that we get
back from our requests. In the next section, we will see how to do just that.

Exercise - Validating a Web Test

Visual Studio Team System provides validation rules to help you inspect the
response from an HTTP request to see if it matches your criteria. You can verify
whether a request contains certain text, HTML tags, or comes back in a certain
amount of time.

Of course, this mechanism is extensible. Instead of using a built-in validation rule,
we will create our own custom validation rule.

Actions Select the last request in your web test

Right-click and choose Add Validation Rule

Actions These are the standard built-in validation rules

Let’s create our own; press Cancel

Validation rules are just .NET assemblies that implement certain interfaces. Like
before, we will create our .NET assembly project, add a reference to an object model
that Visual Studio Team System publishes and write the code for our validation rule.

Actions Add a new Visual C# -> Windows -> Class Library project to your

solution

Actions Put your cursor in the area shown, right-click and choose Insert Snippet

Actions Pick Demo Snippets -> Web Test Namespaces

Actions Select the code shown

Right-click and choose Insert Snippet…

Actions Pick Demo Snippet -> Validation Class

Our validation rule will look for the occurrence of ‘Thank You’ in the response; this
should be in the page we see after we purchase an item.

Actions Your code should look as shown

Actions Select your project, right-click and choose Add Reference

Browse and choose:

C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\Public
Assemblies\Microsoft.VisualStudio.QualityTools.WebTestFramework.dll

Press OK

Actions Choose the Build -> Build ClassLibrary1 menu option

Adding a reference from our validation rule project to our test project is the
registration mechanism for validation rules.

Actions Select your Test Project, and add a reference to the ClassLibrary1 project

Actions Go back to the last request in your web test, right-click and choose

Validation Rules

Your new Validation Rule should be shown; select it and press OK

Actions When your test finishes, double-click on it’s results to view its details

The Details tab of the last request in your web test will show the results of
your validation rule

We have one more issue with our web testing, we are only simulating one user, and
this is not very realistic. In the next section, we will see how to multiply the affects
of our web test to simulate a more realistic level of stress.

Exercise - Load Testing

We’ve done a great job of making sure our code works for a single user; but we’re
going to get a lot of traffic to our re-vamped AdventureWorks site.

From right inside Visual Studio Team System, we can make sure that my web site is
going to stand up to a lot of traffic and stress.

Load testing is just another type of test that Visual Studio Team System supports.

Actions Select your test project

Right-click and choose the Add -> Load Test option

Actions Name your load test anything that you’d like

Press Next

Actions Choose the Step Load option

Press Next

Actions Press Add

Actions Double-click on your web test

Press Next

Actions Choose the Off – Don’t use Think Times option

Press Next

Actions Choose any spread of browsers that you would like

Press Next

Actions Choose any spread of network connection speeds that you would like

Press Next

Actions Press Next

Actions Set the Run Duration to 1 minute

Press Finish

Actions Go to your Test View

Select your load test and press Run Tests

Actions It will take a few minutes for your load test to run

As it runs, you will see Windows Performance Counters charted

End of Lab

Visit http://lab.msdn.microsoft.com/teamsystem/ for
more information

