

Hands-On Lab (MBL02)

Lab Manual

Introduction to the New Managed APIs in
Windows Mobile

Please do not remove this manual from the lab.
The lab manual will be available from CommNet.

Page i

Information in this document is subject to change without notice. The example companies, organizations,
products, people, and events depicted herein are fictitious. No association with any real company, organization,
product, person or event is intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced,
stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft
Corporation.

Microsoft may have patents, patent applications, trademarked, copyrights, or other intellectual property rights
covering subject matter in this document. Except as expressly provided in any written license agreement from
Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights,
or other intellectual property.

©2005 Microsoft Corporation. All rights reserved.

Microsoft, Outlook, Visual Studio, Windows, and Windows Mobile are either registered trademarks or trademarks
of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names herein may be the trademarks of their respective owners.

Page ii

HOL101 (MBL02): Introduction to the New Managed APIs in
Windows Mobile

This lab introduces you to the new managed APIs in Windows Mobile. Improve
on an existing application by making use of these new interfaces. Upon
completion of this lab, you will be ready to use these APIs to simplify your
existing code or extend your applications to make use of Windows Mobile's
many new capabilities.

Intended Audience: Application developer

Level 200

Estimated Completion Time: 90 minutes

Usernames/passwords used in this lab
Location Username Password
<none> <none> <none>

Page iii

Contents
LAB 1: INTRODUCTION ...1

Lab Objective ...1
Exercise 1 – Using Pocket Outlook to Replace a Proprietary Data Store ...2

Task 1 – Populate the Emulator with Test Data ..2
Task 2 – Become Familiar with the Existing Application ...4
Task 3 – Update Application to Use Pocket Outlook...5

Exercise 2 – Using Contact Picker to Add Searching ..8
Task 1 – Add Assembly References and Namespace Declarations ...8
Task 2 – Updating the Menu..8
Task 3 – Add the Find Functionality ..10
Task 4 – Testing the New Functionality...11

Exercise 3 – Using Telephony to Provide Automatic Dialing ...12
Task 1 – Add Assembly References and Namespace Declarations ...12
Task 2 – Updating the Menu..13
Task 3 – Add Automatic Dialing...13
Task 4 – Testing the New Functionality...14

Exercise 4 – Using Messaging and the Picture Picker to Send E-Mail with Attachments15
Task 1 – Add Assembly References and Namespace Declarations ...15
Task 2 – Updating the Menu..15
Task 3 – Using Picture Picker..16
Task 4 – Using the Messaging API to E-Mail the Picture ..16
Task 5 – Testing the New Functionality...18

Exercise 5 – Using the State and Notification Broker API to Retrieve System State Information19
Task 1 – Add Assembly References and Namespace Declarations ...20
Task 2 – Using State and Notification Broker API to Retrieve Device Information ...20

Exercise 6 – Using the State and Notification Broker API to Receive Notifications of Changes in System State21
Task 1 – Creating the SystemState Instance ..22
Task 2 – Handling SystemState Change Notifications ..22
Task 3 – Displaying the Caller’s Contact Information..23
Task 4 – Testing the New Functionality...24

Lab Summary ...24

Page 1

Lab 1: Introduction

This lab introduces many of the newly available Microsoft® Windows Mobile™–managed APIs such as
Telephony, Messaging, Microsoft Pocket Outlook®, Picture Picker, Contact Picker, and the State and
Notification Broker API. To understand these APIs and how they might fit into an application, you will be
updating an existing .NET Compact Framework application replacing legacy features with more
appropriate features provided by the new APIs.

You will then add several new features to the application that more closely integrates the application
with the phone capabilities. These new features improve the productivity of the user by automating
common tasks.

The application that you will be updating is an existing Smartphone application used by field sales
representatives from a high-end art and photography dealer. At a high-end dealership, sales
representatives spend a great deal of time on the road working closely with individual clients. These
sales representatives must always have easy access to client information and must be able to work
effectively when not in the office.

The existing application is a simple contact manager keeping track of contact names, work phone
number, mobile phone number, and notes about that client. The application uses a custom data format
to track client information because it does not take advantage of the available Pocket Outlook features.
It also provides no integration with any phone features. Actions such as dialing phone numbers or
sending e-mail messages must all be manually performed by the user.

In this lab, you will integrate the application with Pocket Outlook and replace the custom data format.
You will then use the other APIs to closely integrate the application with the features of the phone such
as automatically dialing a contact and sending e-mail messages. You will also update the application to
monitor for incoming or manually placed calls with a client so that client information is automatically
displayed.

Lab Objective

This lab will take approximately 90 minutes.

The objective of this lab is to introduce the managed APIs that are available as part of the Windows
Mobile platform and demonstrate their effectiveness in improving user efficiency. In this lab, you will do
the following exercises:

• Using Pocket Outlook to Replace a Proprietary Data Store

• Using Contact Picker to Add Searching

• Using Telephony to Provide Automatic Dialing

• Using Messaging and the Picture Picker to Send E-Mail Messages with Attachments

• Using the State and Notification Broker API to Retrieve System State Information

• Using the State and Notification Broker API to Receive Notifications of Changes in System State

Page 2

Exercise 1 – Using Pocket Outlook to Replace a Proprietary Data Store

In this exercise, you will update the application so that contact information comes from Pocket Outlook
rather than relying on a separate, proprietary data store. The Pocket Outlook integration duplicates the
existing application behavior as well as introduces a new Find Contact feature.

Task 1 – Populate the Emulator with Test Data

• Before starting the lab, you need to run an application to add the necessary Pocket Outlook

contacts and image files to the emulator.

• If Microsoft Visual Studio® 2005 is not already open, start it by navigating to Start | All
Programs | Microsoft Visual Studio 2005 Beta 2 | Microsoft Visual Studio 2005 Beta 2.

• In Visual Studio 2005, click File | Open | Project/Solution.

• In the Open Project dialog box, browse to C:\Microsoft Hands-On-Lab\HOL-
MBL02\Source\Setup Files\.

• Select HOL-MBL02Initialize.sln.

• Click the Open button. The HOL-MBL02Initialize solution should now open.

• Verify that Windows Mobile 5.0 Smartphone Emulator is selected in the drop-down list on the
Visual Studio 2005 Device toolbar as shown in Figure 1.

Figure 1 Emulator selection on the Visual Studio 2005 Device toolbar

• Start the application by clicking Debug | Start Without Debugging on the Visual Studio 2005

menu.

• If prompted by the Deploy HOL-MBL02Initialize dialog box, verify that Windows Mobile 5.0
Smartphone Emulator is selected in the Device window, and then click Deploy.

Note: If the emulator does not appear, look for an icon similar to Figure 2 on the Microsoft
Windows® taskbar and click it to move the emulator to the foreground. Be aware that the first
time the emulator starts, it may take several minutes.

Figure 2 Emulator icon on the Windows taskbar

• When the application appears on the emulator, press softkey 1 under the word Start. The

application displays a wait cursor and indicates that contacts and then images are being added.

Page 3

Page 4

• When the application displays Initialization Complete, press softkey 2 under the word Exit to
exit the application.

• Close the solution by clicking File | Close Solution on the Visual Studio 2005 menu.

Task 2 – Become Familiar with the Existing Application

• Before modifying the application, you should briefly become familiar with its behavior and

implementation. To understand the program’s current behavior, you will run it by using the Windows
Mobile Smartphone emulator.

• If Visual Studio 2005 is not already open, start it by navigating to Start | All Programs |
Microsoft Visual Studio 2005 Beta 2 | Microsoft Visual Studio 2005 Beta 2.

• In Visual Studio 2005, click File | Open | Project/Solution.

• In the Open Project dialog box, browse to C:\Microsoft Hands-On-Lab\HOL-
MBL02\Source\Exercises\.

• Select HOL-MBL02.sln.

• Click the Open button. The HOL-MBL02 solution should now open.

Note: After they are opened, the solution, project, and source files should now be visible in the
Visual Studio 2005 Solution Explorer. If the Solution Explorer doesn’t automatically start, click
View | Solution Explorer on the Visual Studio 2005 menu.

• Verify that Windows Mobile 5.0 Smartphone Emulator is selected in the drop-down list on the

Visual Studio 2005 Device toolbar as shown in Figure 1.

• Start the application by clicking Debug | Start Without Debugging on the Visual Studio 2005
menu.

• If prompted by the Deploy HOL-MBL02 dialog box, verify that Windows Mobile 5.0
Smartphone Emulator is selected in the Device window and then click Deploy.

Note: If the emulator does not appear, look for an icon similar to Figure 2 on the Windows
taskbar and click it to move the emulator to the foreground. Be aware that the first time the
emulator starts, it may take several minutes.

• On the emulator, press softkey 1 under the word Next to scroll through the list of contacts.

• After you are comfortable with the behavior of the application, press softkey 2 under the word
Exit to exit the application.

• To understand the implementation of the existing application, examine the contents of the
FormMain.cs source file. To open this file, right-click the FormMain.cs file name in the Solution
Explorer and click View Code.

• The key things to notice in this source file are the declaration of the _dataManager variable,
_currentItem variable, and the ShowNext method. The _dataManager variable is the object
responsible for managing the existing legacy data. The _currentItem variable is the currently
selected contact. The ShowNext function is called each time the user clicks the Next option. It is

Page 5

responsible for retrieving the next contact from _dataManager, storing it in _currentItem, and
updating the form.

• Although this implementation provides an adequate solution for managing client data, it duplicates
the features provided by Pocket Outlook and in many cases may duplicate the Pocket Outlook
contact data as well.

Task 3 – Update Application to Use Pocket Outlook

• In this task, you will remove the existing legacy data management implementation from the

application and update it to provide the same behavior by using Pocket Outlook.

• Add an assembly reference to the Pocket Outlook assembly,
Microsoft.WindowsMobile.PocketOutlook.

• Right-click the word References in the Visual Studio 2005 Solution Explorer, and click Add
Reference.

• In the Add Reference dialog box, click Microsoft.WindowsMobile.PocketOutlook.

• Click the OK button.

• Add a using declaration for the Microsoft.WindowsMobile.PocketOutlook namespace.

• If FormMain.cs is not already open in the Visual Studio 2005 editor, open it by right-clicking
FormMain.cs in the Solution Explorer and clicking View Code.

• Locate the existing using declarations at the top of the FormMain.cs file.

• Add the using declaration for Microsoft.WindowsMobile.PocketOutlook immediately following
the existing using declarations.

using Microsoft.WindowsMobile.PocketOutlook;

• To communicate with Pocket Outlook, applications must first create a session. The session
provides connectivity to Pocket Outlook in much the same way that a database connection provides
connectivity to a database and will be used throughout the application to communicate with Pocket
Outlook. When the application no longer needs the connection, the session must be disposed of.

• To create the Pocket Outlook session, add the following declaration to the FormMain.cs file
immediately after the existing _dataManager declaration.

OutlookSession _outlook = new OutlookSession();

• Locate the menuExit_Click method in the FormMain.cs file.

• To dispose of the Pocket Outlook session when the application is closed, call the Pocket
Outlook session’s Dispose method in the menuExit_Click method immediately prior to the
existing call to the Close method.

_outlook.Dispose();

Page 6

• Contact items in Pocket Outlook are represented by the Contact class. To keep track of the current
Contact displayed by your application, add the following declaration to FormMain.cs immediately
after the _currentItem declaration.

Contact _currentContact = null;

• Now update the ShowNext method to scroll through the Pocket Outlook contacts. You are going to
modify the implementation so that each time ShowNext is called it asks Pocket Outlook the index
of the currently displayed contact and then increments that index by 1. Use the modulus operator
(%) to loop back to the beginning when the end is reached.

• Locate the ShowNext method in the FormMain.cs file, and declare an int variable named index
with an initial value of 0 as the first line of the method.

int index = 0;

• The index value needs to be incremented only if a contact is already displayed, so add an IF
statement checking that the value of _currentContact is not null.

if (_currentContact != null)
{
}

• In the IF statement, first ask the Pocket Outlook Contacts folder’s ContactsCollection the index
of the currently displayed contact by calling the IndexOf method. Store the result in index.

index = _outlook.Contacts.Items.IndexOf(_currentContact);

• Still in the IF statement, increment the index by 1. Use the modulus operator (%) to set the
index back to 0 if the index reaches the number of contacts contained in the Contacts folder’s
ContactsCollection.

index = (index + 1) % _outlook.Contacts.Items.Count;

• With the index of the next contact to retrieve determined, you can now use the Contacts folder’s
ContactsCollection indexer to retrieve that contact. Add this line immediately after the IF
statement.

_currentContact = _outlook.Contacts.Items[index];

• Now modify the four assignments to the form text boxes to use _currentContact rather than
_currentItme. When you’re finished, the lines should appear like the following.

txtName.Text = _currentContact.FileAs;
txtWorkPhone.Text = _currentContact.BusinessTelephoneNumber;
txtMobilePhone.Text = _currentContact.MobileTelephoneNumber;
txtNotes.Text = _currentContact.Body;

• Finally, comment out the line in the ShowNext method, where _currentItem is assigned the
value of _dataManager.Next because you no longer need to access the legacy data system.
The complete ShowNext method should now look like the following.

Page 7

private void ShowNext()
{
 int index = 0;
 if (_currentContact != null)
 {
 index = _outlook.Contacts.Items.IndexOf(_currentContact);
 index = (index + 1) % _outlook.Contacts.Items.Count;
 }

 _currentContact = _outlook.Contacts.Items[index];
 //_currentItem = _dataManager.Next;

 txtName.Text = _currentContact.FileAs;
 txtWorkPhone.Text = _currentContact.BusinessTelephoneNumber;
 txtMobilePhone.Text = _currentContact.MobileTelephoneNumber;
 txtNotes.Text = _currentContact.Body;
}

• You’ve added all of the necessary code. The last thing to do is to comment out the class
declarations for _dataManager and _currentItem because you are no longer using them.

• Locate the declaration of _dataManager just after the FormMain constructor, and comment out
the line.

// FieldSalesDataManager _dataManager = new FieldSalesDataManager();

• Locate the _currentItem declaration a few lines further down, and comment it out as well.

// FieldSalesData _currentItem;

• You are now ready to test the new version of the application.

• Build your application by clicking Build | Build Solution on the Visual Studio 2005 menu.
Correct any compilation errors before proceeding.

• Verify that Windows Mobile 5.0 Smartphone Emulator is still selected in the drop-down list on
the Visual Studio 2005 Device toolbar as shown in Figure 1.

• Start the application by clicking Debug | Start Without Debugging on the Visual Studio 2005
menu.

• If prompted by the Deploy HOL-MBL02 dialog box, verify that Windows Mobile 5.0
Smartphone Emulator is selected in the Device window, and then click Deploy.

Note: If you should receive an error during deployment that indicates that the process or file is
in use, this just means that the program is still running on the emulator and must be exited
before a new copy can be deployed and run. See Appendix A of this document for instructions
for exiting a running application.

• Pressing softkey 1 under the word Next, scroll through the contact list. Notice that there are now

several more contacts available than before. These additional contacts are available because
the application is now reading directly from the Pocket Outlook contact list rather than a
separate, proprietary data store.

Page 8

• After you are comfortable with the behavior of the application, press softkey 2 under the word
Exit to exit the application.

Exercise 2 – Using Contact Picker to Add Searching

In this exercise, you will add a search feature to the application that users can use to look up a specific
contact rather than only being able to scroll through contacts as they do now. To implement this task,
you use the Contact Picker class, ChooseContactDialog.

Task 1 – Add Assembly References and Namespace Declarations

• Before you can use the ChooseContactDialog, you must add a reference for the

Microsoft.WindowsMobile.Forms assembly to the project and add a using declaration for the
corresponding namespace to the source code.

• Right-click the word References in the Visual Studio 2005 Solution Explorer, and click Add
Reference.

• In the Add Reference dialog box, click Microsoft.WindowsMobile.Forms.

Note: There are several assemblies visible in the Add Reference dialog box containing the
word “Forms.” Be sure to choose the assembly named Microsoft.WindowsMobile.Forms.

• Click the OK button.

• If FormMain.cs is not already open in the Visual Studio 2005 editor, open it by right-clicking
FormMain.cs in the Solution Explorer and clicking View Code.

• Locate the existing using declarations at the top of the FormMain.cs file.

• Add the using declaration for Microsoft.WindowsMobile.Forms immediately following the
existing using declarations.

using Microsoft.WindowsMobile.Forms;

Task 2 – Updating the Menu

• Now you need to modify the application menu to provide the user with additional options. You do

this by deleting the existing Exit menu option and replacing it with a pop-up menu that provides the
user with options to find a contact and exit the program.

• Open FormMain.cs in design mode by double-clicking FormMain.cs in the Visual Studio 2005
Solution Explorer.

• Locate the Exit menu option on the form designer as shown in Figure 3. Right-click the Exit
menu option on the form designer, and click Delete. The words Type Here should replace the
word Exit.

Figure 3 Application Exit menu option as it appears in the form designer

• Click the menu where Type Here appears, type the word Menu and press ENTER. The area

around the word Menu should turn blue and the words Type Here should appear above.

• Type the word Exit and press ENTER.

• Type the word Find and press ENTER. The menu should now look similar to Figure 4.

Figure 4 The new application menu as it appears in the form designer

Page 9

Page 10

• Right-click the word Find in the menu, and click Properties. In the Properties window, type
menuFind for the value of (Name) and press ENTER.

• Right-click the word Exit in the menu, and click Properties. In the Properties window, type
menuExit for the value of (Name) and press ENTER.

Task 3 – Add the Find Functionality

• You are now ready to add the functionality to let the user choose a specific contact.

• Double-click the Find menu option in the form designer. This opens the FormMain.cs code and
creates a menuFind_Click method.

• In the menuFind_Click method, declare and create an instance of the ChooseContactDialog
class; name the variable contactDialog.

ChooseContactDialog contactDialog = new ChooseContactDialog();

• The ChooseContactDialog class provides the ability to select either a contact or specific
contact properties such as an e-mail address or phone number. In this case, the user should
select the actual contact, not individual properties. Set the ChooseContactDialog
ChooseContactOnly property to TRUE to indicate that only the contact names are to be
displayed.

contactDialog.ChooseContactOnly = true;

• Display the ChooseContactDialog by calling the ShowDialog method. The ShowDialog
method returns a DialogResult, which indicates whether the user made a selection or canceled
the dialog box. Store the result of the call to ShowDialog in a DialogResult variable named
result.

DialogResult result = contactDialog.ShowDialog();

• When the call to ShowDialog is returned, you need to check whether the user actually made a
selection. You do this by adding an IF statement to check whether the result variable contains
the enumeration DialogResult.OK. If the user had canceled the dialog box without making a
selection, the result variable would contain DialogResult.Cancel.

if (result == DialogResult.OK)
{
}

• If the user did make a selection, the application should now display the selected contact. In the
IF statement, assign the contactDialog.SelectedContact property to _currentContact.

_currentContact = contactDialog.SelectedContact;

• Now that _currentContact is updated to reflect the user’s selection, the only thing left to do is
update the text boxes with this contact’s information. The easiest way to do this is to the copy
four lines from the ShowNext method where the _currentContact properties are assigned to

Page 11

the form text boxes and past the lines into the body of the IF statement just after the assignment
to _currentContact.

 txtName.Text = _currentContact.FileAs;
 txtWorkPhone.Text = _currentContact.BusinessTelephoneNumber;
 txtMobilePhone.Text = _currentContact.MobileTelephoneNumber;
 txtNotes.Text = _currentContact.Body;

• You’ve added all of the necessary code to the menuNext_Click method. It should now look like the
following.

private void menuFind_Click(object sender, EventArgs e)
{
 ChooseContactDialog contactDialog = new ChooseContactDialog();
 contactDialog.ChooseContactOnly = true;
 DialogResult result = contactDialog.ShowDialog();
 if (result == DialogResult.OK)
 {
 _currentContact = contactDialog.SelectedContact;
 txtName.Text = _currentContact.FileAs;
 txtWorkPhone.Text = _currentContact.BusinessTelephoneNumber;
 txtMobilePhone.Text = _currentContact.MobileTelephoneNumber;
 txtNotes.Text = _currentContact.Body;
 }
}

• The last thing you need to do before testing your new Find feature is attach the code necessary to
close the application to your Exit menu option.

• Open FormMain.cs in design mode by double-clicking FormMain.cs in the Visual Studio 2005
Solution Explorer.

• Double-click the Exit menu option in the form designer. This adds the new method
menuExit_Click_1. The “_1” is appended to the name because the form already contains a
menuExit_Click method.

• Locate the existing menuExit_Click method. Copy the two lines contained in that method, and
paste them in your new menuExit_Click_1 method. The lines to copy are shown below for your
reference.

_outlook.Dispose();
this.Close();

• The original menuExit_Click method is no longer executed by the application because it was
attached to the original Exit menu option, which you deleted to create the pop-up menu in the
previous task. Because it is no longer executed, delete the menuExit_Click method.

Task 4 – Testing the New Functionality

• You are now ready to test the new application functionality.

• Build your application by clicking Build | Build Solution on the Visual Studio 2005 menu.
Correct any compilation errors before proceeding.

Page 12

• Verify that Windows Mobile 5.0 Smartphone Emulator is still selected in the drop-down list on
the Visual Studio 2005 Device toolbar as shown in Figure 1.

• Start the application by clicking Debug | Start Without Debugging on the Visual Studio 2005
menu.

• If prompted by the Deploy HOL-MBL02 dialog box, verify that Windows Mobile 5.0
Smartphone Emulator is selected in the Device window, and then click Deploy.

• Press softkey 2 under the word Menu to display the pop-up menu. Select the Find option either
by clicking it by using your mouse or by using your mouse to select the number 2 on the
emulator keypad.

• Select one of the contacts. The application then displays the appropriate information.

• Select the Find option again. When the Contact Picker opens, start typing a portion of one of
the contact names. Notice that the list is automatically filtered based on the entered text. Select
one of the contacts as before.

• Press softkey 1 under the word Next. Notice that the scrolling continues from the point of the
most recent selection. This feature works correctly because the implementation of the
ShowNext method you wrote in the previous task uses the ContactCollection.IndexOf method
to determine the index to use when scrolling rather than just incrementing a simple index
managed by the application.

• After you are comfortable that the new feature works correctly, exit the application by pressing
softkey 2 under the word Menu and clicking Exit.

Exercise 3 – Using Telephony to Provide Automatic Dialing

In this exercise, you will use the new managed Telephony API to provide automatic phone dialing as
part of your application. You will do this by adding two new menu options Dial Work Phone and Dial
Mobile Phone, which will automatically dial the appropriate number for the currently displayed contact.
Adding dialing support to your application allows the user to place a phone call without needing to dial it
manually or leave your application.

Task 1 – Add Assembly References and Namespace Declarations

• Before you can use the Telephony API, you must add a reference for the

Microsoft.WindowsMobile.Telephony assembly to the project and add a using declaration for the
corresponding namespace to the source code.

• Right-click the word References in the Visual Studio 2005 Solution Explorer, and click Add
Reference.

• In the Add Reference dialog box, click Microsoft.WindowsMobile.Telephony.

• Click the OK button.

• If FormMain.cs is not already open in the Visual Studio 2005 editor, open it by right-clicking
FormMain.cs in the Solution Explorer and clicking View Code.

• Locate the existing using declarations at the top of the FormMain.cs file.

Page 13

• Add the using declaration for Microsoft.WindowsMobile.Telephony immediately following the
existing using declarations.

using Microsoft.WindowsMobile.Telephony;

Task 2 – Updating the Menu

• Now modify the application menu to provide the user with the two new menu options.

• Open FormMain.cs in design mode by double-clicking FormMain.cs in the Visual Studio 2005
Solution Explorer.

• The new menu options are added to the same menu containing the Exit and Find options that
you added in the last task. If the menu is not already expanded as shown in Figure 4, click the
word Menu in the form designer to expand it. Then click the text Type Here.

• Type Dial Work Phone and press ENTER.

• Type Dial Mobile Phone and press ENTER.

• Right-click Dial Work Phone on the menu, and click Properties. In the Properties window, type
menuDialWorkPhone for the value of (Name) and press ENTER.

• Right-click Dial Mobile Phone on the menu, and click Properties. In the Properties window,
type menuDialMobilePhone for the value of (Name) and press ENTER.

Task 3 – Add Automatic Dialing

• In this task, you will use the Phone class to initiate a phone call to the current client by using the

information stored in the _currentContact variable.

• First, add the code to place a call to the client’s work phone.

• Double-click the Dial Work Phone menu option in the form designer. This opens the
FormMain.cs code and creates a menuDialWorkPhone_Click method.

• In the menuDialWorkPhone _Click method, declare and create an instance of the Phone
class; name the variable telephone.

Phone telephone = new Phone();

• Now use the Phone class’s Talk method to place a call to the current contact’s
BusinessTelephoneNumber.

telephone.Talk(_currentContact.BusinessTelephoneNumber);

• Now add the code to place a call to the client’s mobile phone.

• Open FormMain.cs in design mode by double-clicking FormMain.cs in the Visual Studio 2005
Solution Explorer.

• Double-click the Dial Mobile Phone menu option in the form designer. This opens the
FormMain.cs code and creates a menuDialMobilePhone_Click method.

• In the menuDialMobilePhone_Click method, add the code to declare an instance of the
Phone class and place a call by using the current client’s MobileTelephoneNumber.

• The menuDialWorkPhone_Click and menuDialMobilePhone_Click methods should now look
like the following.

private void menuDialWorkPhone_Click(object sender, EventArgs e)
{
 Phone telephone = new Phone();
 telephone.Talk(_currentContact.BusinessTelephoneNumber);
}

private void menuDialMobilePhone_Click(object sender, EventArgs e)
{
 Phone telephone = new Phone();
 telephone.Talk(_currentContact.MobileTelephoneNumber);
}

Task 4 – Testing the New Functionality

• You are now ready to test the new application functionality.

• Build your application by clicking Build | Build Solution on the Visual Studio 2005 menu.
Correct any compilation errors before proceeding.

• Verify that Windows Mobile 5.0 Smartphone Emulator is still selected in the drop-down list on
the Visual Studio 2005 Device toolbar.

• Start the application by clicking Debug | Start Without Debugging on the Visual Studio 2005
menu.

• If prompted by the Deploy HOL-MBL02 dialog box, verify that Windows Mobile 5.0
Smartphone Emulator is selected in the Device window and then click Deploy.

• Press softkey 2 under the word Menu to display the pop-up menu. Select the Dial Work Phone
option to initiate the phone call. The emulator display switches to the phone screen. The phone
screen first indicates that the phone is dialing and then is connected as shown in Figure 5.

Figure 5 The emulator display when dialing and connecting a phone call

Note: There may be a delay of a few seconds between the time you select the Dial Work

Page 14

Page 15

Phone menu option and when the emulator updates the display to show the phone screen.

• To end the phone call, click the emulator End button (the button that has a red telephone on it).

• Scroll through different contacts, and test both the Dial Work Phone and Dial Mobile Phone
menu options. Verify that the call is placed to the correct phone number in each case.

• When you are comfortable that the new feature works correctly, exit the application by pressing
softkey 2 under the word Menu and clicking Exit.

Exercise 4 – Using Messaging and the Picture Picker to Send E-Mail
Messages with Attachments

In this exercise, you will use the new Picture Picker and managed Messaging API to provide the user
with the capability to send a contact an e-mail message with a picture as an attachment. You will add
this feature by providing a new Send Picture menu option.

Task 1 – Add Assembly References and Namespace Declarations

• Before you can use the Messaging API, you must add a reference for the System.Messaging

assembly to the project and add a using declaration for the corresponding namespace to the
source code. You do not need to add an assembly reference or namespace declaration for the
Picture Picker because it is part of the Microsoft.WindowsMobile.Forms assembly and namespace
that you already added in Exercise 2.

• Right-click the word References in the Visual Studio 2005 Solution Explorer, and click Add
Reference.

• In the Add Reference dialog box, click System.Messaging.

• Click the OK button.

• If FormMain.cs is not already open in the Visual Studio 2005 editor, open it by right-clicking
FormMain.cs in the Solution Explorer and clicking View Code.

• Locate the existing using declarations at the top of the FormMain.cs file.

• Add the using declaration for System.Messaging immediately following the existing using
declarations.

using System.Messaging;

Task 2 – Updating the Menu

• Now modify the application menu to provide the user with a new menu option.

• Open FormMain.cs in design mode by double-clicking FormMain.cs in the Visual Studio 2005
Solution Explorer.

Page 16

• The new menu option is added to the same menu that you used in the previous two exercises. If
the menu is not already expanded as shown in Figure 4, click the word Menu in the form
designer to expand it. Then click the text Type Here.

• Type Send Picture and press ENTER.

• Right-click Send Picture in the menu, and click Properties. In the Properties window, type
menuSendPicture for the value of (Name) and press ENTER.

Task 3 – Using Picture Picker

• In this task, you will use the Picture Picker to let the user select which photo he or she wants to

send to the client.

• Double-click the Send Picture menu option in the form designer. This opens the FormMain.cs
code and creates a menuSendPicture_Click method.

• In the menuSendPicture_click method, declare and create an instance of the Picture Picker
class, SelectPictureDialog; name the variable picturePicker.

SelectPictureDialog picturePicker = new PicturePicker();

• Now set the SelectPictureDialog class to initially display pictures in the \Images folder.
Because in this application the user will only be showing professional photos, the application
should not allow the user to select pictures that might be stored on an attached camera. So the
CameraAccess property is set to FALSE.

picturePicker.InitialDirectory = @”\Images”;
picturePicker.CameraAccess = false;

• You must also consider how Digital Rights Management (DRM) issues are to be handled.
Assuming that the users of this application have properly purchased any photos or artwork
being sold, the application should allow the user to select DRM protected files. So the
ShowDrmContent property is set to TRUE.

picturePicker.ShowDrmContent = true;

• Any images that have been specifically protected against being forwarded should not be
displayed because the attempt to send them by e-mail will fail. So the
ShowForwardLockedContent property is set to FALSE.

picturePicker.ShowForwardLockedContent = false;

• Now display the SelectPictureDialog class by using the ShowDialog method, and assign the
returned DialogResult to a variable named result.

Task 4 – Using the Messaging API to E-Mail the Picture

• In this task, you will use the Messaging API to create an e-mail message, attach the selected

picture, and display the message to the user before sending.

Page 17

• The application should create an e-mail message only if the user actually selected a picture. So
add an IF statement verifying that the user made a selection in SelectPictureDialog. Do this
immediately after the call to ShowDialog in the menuSendPicture_Click method.

if (result == DialogResult.OK)
{
}

• In the IF statement block, declare and create an instance of the EmailMessage class; name the
variable message.

EmailMessage message = new EmailMessage();

• To make communicating with clients as easy as possible, the application should populate the e-
mail message. Start by setting the Subject of the message to “The picture we discussed” and
the BodyText to “Attached please find the picture we discussed. Please feel free to contact me
with any questions”.

message.Subject = “The picture we discussed”;
message.BodyText = “Attached please find the picture we discussed. ” +
 “Please feel free to contact me with any questions”;

• Address the e-mail message by declaring and creating an instance of the Recipient class and
pass the current client’s Email1Address to the constructor; name the variable addressee. Add
the addressee to the message.To collection.

Recipient addressee = new Recipient(_currentContact.Email1Address);
message.To.Add(addressee);

• Now attach the user-selected picture to the message. This requires creating an instance of the
Attachment class that passes the selected picture’s file name to the Attachment constructor.
The SelectPictureDialog exposes the selected file name as the FileName property. After it’s
created, the attachment is added to the message.Attachments collection.

Attachment picture = new Attachment(picturePicker.FileName);
message.Attachments.Add(picture);

• The message is now ready to send. Although the application could just send the message, it is
probably better to give the user a chance to review and, if desired, modify the message before it’s
sent. The MessagingApplication.DisplayMessage method is a static method that provides this
capability because it uses the standard compose form of the device-messaging application to
display an e-mail message. After the message is displayed, the user can review, modify, and send
the message just as the user would if using the messaging application directly.

Because it is not uncommon for a device to contain several messaging accounts, you should
identify which account to use to display the message. If you do not do this, the DisplayMessage
method will prompt the user to select the account. In this lab, assume that the first e-mail account
exposed by the Pocket Outlook EmailAccounts collection is the default account.

• While still in the IF statement block, declare an EmailAccount variable named defaultAccount

and assign it the first account in the EmailAccounts collection.

Page 18

EmailAccount defaultAccount = _outlook.EmailAccounts[0];

• To display the message to the user, call the MessagingApplication.DisplayMessage method
and pass defaultAccount as the first argument and message as the second.

MessagingApplication.DisplayMessage(defaultAccount, message);

• You added all of the necessary code to the menuSendPicture_Click method. It should now look
like the following.

private void menuSendPicture_Click(object sender, EventArgs e)
{
 SelectPictureDialog picturePicker = new SelectPictureDialog();
 picturePicker.InitialDirectory = @"\Images";
 picturePicker.CameraAccess = false;
 picturePicker.ShowDrmContent = true;
 picturePicker.ShowForwardLockedContent = false;
 DialogResult result = picturePicker.ShowDialog();

 if (result == DialogResult.OK)
 {
 EmailMessage message = new EmailMessage();
 message.Subject = "The picture we discussed";
 message.BodyText = "Attached is the picture we discussed. " +
 "Please feel free to contact me with any questions";
 Recipient addressee = new Recipient(_currentContact.Email1Address);
 message.To.Add(addressee);
 Attachment picture = new Attachment(picturePicker.FileName);
 message.Attachments.Add(picture);

 EmailAccount defaultAccount = _outlook.EmailAccounts[0];
 MessagingApplication.DisplayComposeForm(defaultAccount, message);
 }
}

Task 5 – Testing the New Functionality

• You are now ready to test the new application functionality.

• Build your application by clicking Build | Build Solution on the Visual Studio 2005 menu.
Correct any compilation errors before proceeding.

• Verify that Windows Mobile 5.0 Smartphone Emulator is still selected in the drop-down list on
the Visual Studio 2005 Device toolbar.

• Start the application by clicking Debug | Start Without Debugging on the Visual Studio 2005
menu.

• If prompted by the Deploy HOL-MBL02 dialog box, verify that Windows Mobile 5.0
Smartphone Emulator is selected in the Device window and then click Deploy.

• Press softkey 2 under the word Menu to display the pop-up menu. Select the Send Picture
option. The Picture Picker now appears and looks similar to Figure 6.

Figure 6 The Picture Picker

• Using the navigation pad, browse to a picture. Press softkey 1 under the word Select to select

the picture. The e-mail form appears and is fully populated with the e-mail address, subject,
body text, and attachment.

• At this point, you can just send the message by pressing softkey 1 under the word Send. If you
want, you can modify any portion of the message before sending.

• Exit the application by pressing softkey 2 under the word Menu and clicking Exit.

• To verify that the message was actually submitted to the e-mail system, check the Pocket Outlook
Outbox folder.

• Display the Smartphone Home Screen by clicking the Home button (the button immediately
below softkey 1 that has a picture of a house on it).

• Press softkey 1 under the word Start. Browse to and select the Messaging icon.

• Select Outlook E-mail.

• Press softkey 2 under the word Menu.

• Select Folders.

• Select Outbox.

• You should see a message with the subject “The picture we discussed.” This is the message
sent by the application.

Exercise 5 – Using the State and Notification Broker API to Retrieve System
State Information

In this exercise, you will use the new State and Notification Broker API to retrieve state information from
the phone and be notified of changes to the phone’s state. The State and Notification Broker API is a
very comprehensive API that provides access to over 100 device state values and state value change
notifications. In this exercise, you will use it first to retrieve the device owner’s phone number. You will
then use it to be notified of when a call comes into the phone so that the application will automatically

Page 19

Page 20

display information about the caller.

Task 1 – Add Assembly References and Namespace Declarations

• Before you can use the State and Notification Broker API, you must add a reference for the

Microsoft.WindowsMobile.Status and Microsoft.WindowsMobile assemblies to the project. You also
must add a using declaration for the Microsoft.WindowsMobile.Status namespace to the source
code.

• Right-click the word References in the Visual Studio 2005 Solution Explorer, and click Add
Reference.

• In the Add Reference dialog box, click Microsoft.WindowsMobile.Status and
Microsoft.WindowsMobile.

Note: You will not be using any classes from the Microsoft.WindowsMobile assembly. However,
you must add a reference to it because the SystemState class (defined in the
Microsoft.WindowsMobile.Status assembly) implements an interface defined in the
Microsoft.WindowsMobile assembly.

• Click the OK button.

• If FormMain.cs is not already open in the Visual Studio 2005 editor, open it by right-clicking
FormMain.cs in the Solution Explorer and clicking View Code.

• Locate the existing using declarations at the top of the FormMain.cs file.

• Add the using declaration for Microsoft.WindowsMobile.Status immediately following the
existing using declarations.

using Microsoft.WindowsMobile.Status;

Task 2 – Using State and Notification Broker API to Retrieve Device Information

• As mentioned at the beginning of this exercise, the State and Notification Broker API provides

access to over 100 different device state values. In this task, you will use the State and Notification
Broker API to retrieve the device owner’s name and phone number. You will then use this
information to update the e-mail message you added in the last exercise to provide a more
professional closing.

• Before performing this task, you need to populate the device owner information.

• On the emulator, display the Smartphone Home Screen by pressing the Home button (the
button immediately below softkey 1 that has a picture of a house on it).

• Press softkey 1 under the word Start. Browse to and click the Settings icon.

• Select option 9 More.

• Select option 4 Owner Information.

• Type Judy Lew for the value of Name.

Page 21

• Type 603.555.9999 for the value of Telephone number.

• Press softkey 1 under the word Done.

• Return to the Smartphone Home Screen by clicking the Home button.

• Much of the functionally of the State and Notification Broker API is made available through the
SystemState class. In this part of the task, you will use the SystemState.OwnerName and
SystemState.OwnerPhoneNumber static properties to create the message closing phrase.

• Locate the menuSendPicture_Click method that you added in the last exercise.

• In the menuSendPicture_Click method, locate the line where message.BodyText is assigned
to.

• Just before this line, declare a string variable named ownerName and assign it the value of
SystemState.OwnerName.

string ownerName = SystemState.OwnerName;

• On the next line, declare a string variable named ownerPhoneNumber and assign it the value
of SystemState.OwnerPhoneNumber.

string ownerPhoneNumber = SystemState.OwnerPhoneNumber;

• Now generate a closing phrase for the e-mail message containing the owner name and phone
number. Create the closing phrase by using string.Format and the format string “\nSincerely
{0}\n{1}”. Assign the result to a string variable named closing.

string closing = string.Format(“\nSincerely {0}\n{1}”,
 ownerName, ownerPhoneNumber);

• The last step is to concatenate the closing to the end of message.BodyText.

message.BodyText = “Attached please find the picture we discussed. ” +
 “Please feel free to contact me with any questions” + closing;

• To verify that the message now contains the closing, follow the steps in Task 5 of Exercise 4.
You should see that the e-mail message now contains a proper closing with “Sincerely Judy
Lew” on the second line from the bottom of the message followed by “603.555.9999” on the next
line.

Exercise 6 – Using the State and Notification Broker API to Receive
Notifications of Changes in System State

In addition to providing access to the many state values on the device, the State and Notification Broker
API also supports notifying an application of changes to a value. In this task, you will update the
application to automatically show a contact’s information if the contact should call the user or if the user
should initiate the call from outside of the application. You do this by creating an instance of the
SystemState class and using the SystemProperty enumeration to indicate that the application should
be notified any time the user is talking to someone who is in the user’s contact list. After the
SystemState instance is created, the application can handle SystemState Change event.

Page 22

Task 1 – Creating the SystemState Instance

• To monitor for state changes, you must first create an instance of the SystemState class and use

the SystemProperty enumeration to indicate which value should be monitored.

• Locate the declaration of the _FormMain constructor in FormMain.cs.

• Immediately after the constructor body, declare a SystemState variable named
_phoneCallContactState.

• In the body of the FormMain constructor immediately after the call to InitializeComponent,
construct a new instance of the SystemState class and pass the
SystemProperty.PhoneTalkingCallerContact to the constructor. Assign the result to
_phoneCallContactState. _phoneCallContactState =

 new SystemState(SystemProperty.PhoneTalkingCallerContact);

• The _phoneCallContact SystemState instance now monitors
SystemState.PhoneTalkingCallerContact for changes during execution of the application.

Task 2 – Handling SystemState Change Notifications

• Now add the code necessary for _phoneCallContact to notify your application when the value of

SystemState.PhoneTalkingCallerContact changes. You do this by handling the
_phoneCallContact.Change event.

• On the next line (the line immediately following the construction of the SystemState instance),
type the following code

_phoneCallContactState.Changed +=

• After you type the equal sign (=), Visual Studio 2005 prompts you to press the TAB key. Press
the TAB key. The line automatically completes to look similar to the following.

_phoneCallContactState.Changed +=
 new ChangEventHandler(_phoneCallContactState_Changed);

• Visual Studio 2005 prompts you a second time to press the TAB key. Press the TAB key. Visual
Studio 2005 generates a default implementation of the phoneCallContactState_Changed
method to handle notifications of changes to the SystemState.PhoneTalkingCallerContact
value.

• The application now contains all of the code necessary to handle changes to the value of the
SystemState.PhoneTalkingCallerContact value. The FormMain constructor,
phoneCallContactState_Changed method, and _phoneCallContactState declaration should look
like the following.

public FormMain()
{
 InitializeComponent();

 _phoneCallContactState =

Page 23

 new SystemState(SystemProperty.PhoneTalkingCallerContact);
 _phoneCallContactState.Changed +=
 new ChangeEventHandler(_phoneCallContactState_Changed);

 ShowNext();
}

void _phoneCallContactState_Changed(object sender,
 ChangeEventArgs args)
{
 throw new Exception("The method or operation is not implemented.");
}

SystemState _phoneCallContactState;

Task 3 – Displaying the Caller’s Contact Information

• At this point, the _phoneCallContactState_Changed method is automatically called any time the

user is in a phone conversation with someone in the contact list. The only thing left to do is to
modify the _phoneCallContactState_Changed method so that contact information is changed.

• In the body of the _phoneCallerContactState_Changed method, delete the line that throws
the Exception.

• Add an IF statement that checks that the value of SystemState.PhoneTalkingCallerContact is
not null. This is necessary because the value is null any time the user is not involved in a phone
call or if the phone call is with someone who is not in the contact list.

if (SystemState.PhoneTalkingCallerContact != null)
{
}

• In the IF statement block, assign the value of SystemState.PhoneTalkingCallerContact to
_currentContact.

_currentContact = SystemState.PhoneTalkingCallerContact;

• Now that _currentContact contains a reference to the contact that the user is talking to, update
the text boxes with the contact’s information. The easiest way to do this is to the copy four lines
from the ShowNext method where the _currentContact properties are assigned to the form
textboxes and past the lines into the body of the IF statement just after the assignment to
_currentContact.

 txtName.Text = _currentContact.FileAs;
 txtWorkPhone.Text = _currentContact.BusinessTelephoneNumber;
 txtMobilePhone.Text = _currentContact.MobileTelephoneNumber;
 txtNotes.Text = _currentContact.Body;

• There’s a strong chance that your application may be running in the background at the time the
phone call occurs. To give your application form focus, call the Activate method.

this.Activate();

• The complete _phoneCallContactState_Changed method now looks like the following.

Page 24

void _phoneCallContactState_Changed(object sender,
 ChangeEventArgs args)
{
 if (SystemState.PhoneTalkingCallerContact != null)
 {
 _currentContact = SystemState.PhoneTalkingCallerContact;
 txtName.Text = _currentContact.FileAs;
 txtWorkPhone.Text = _currentContact.BusinessTelephoneNumber;
 txtMobilePhone.Text = _currentContact.MobileTelephoneNumber;
 txtNotes.Text = _currentContact.Body;
 this.Activate();
 }
}

Task 4 – Testing the New Functionality

• You are now ready to test the new application functionality. The new feature automatically displays

a contact’s information if a contact calls the Smartphone or if the user manually calls a contact.
There is no support for receiving calls to the emulator, so you’ll test the feature by manually placing
a phone call to one of the contacts.

• Build your application by clicking Build | Build Solution on the Visual Studio 2005 menu.
Correct any compilation errors before proceeding.

• Verify that Windows Mobile 5.0 Smartphone Emulator is still selected in the drop-down list on
the Visual Studio 2005 Device toolbar.

• Start the application by clicking Debug | Start Without Debugging on the Visual Studio 2005
menu.

• If prompted by the Deploy HOL-MBL02 dialog box, verify that Windows Mobile 5.0
Smartphone Emulator is selected in the Device window and then click Deploy.

• Display the Smartphone Home Screen by clicking the Home button. The application is still
running in the background.

• Using the emulator keypad, dial the phone number 6035551212.

• Press the Talk button (the button immediately below the Home button that has a picture of a
green phone receiver on it). The phone dials and then connects the call. Just after the phone
call connects, the contact information for Jim Wilson automatically appears.

• Try repeating steps 5 through 7 by using a phone number such as “2122225555” that does not
correspond to a contact. Notice that the application remains in the background.

• Try another phone number such as “3105553662” that does correspond to a contact.

• When you are satisfied that the application is working as you expect, exit the application by
pressing softkey 2 under the word Menu and clicking Exit.

Lab Summary

In this lab, you performed the following exercises.

Page 25

• Using Pocket Outlook to Replace a Proprietary Data Store

• Using Contact Picker to Add Searching

• Using Telephony to Provide Automatic Dialing

• Using Messaging and the Picture Picker to Send E-Mail with Attachments

• Using the State and Notification Broker API to Retrieve System State Information

• Using the State and Notification Broker API to Receive Notifications of Changes in System State

In this lab, you used the managed Windows Mobile APIs to update an existing .NET Compact
Framework application to be more closely integrated with the supported features of the phone and
improve user productivity by automating common tasks.

	This lab introduces you to the new managed APIs in Windows M
	Lab 1: Introduction
	Lab Objective
	Exercise 1 – Using Pocket Outlook to Replace a Proprietary D
	Task 1 – Populate the Emulator with Test Data
	Task 2 – Become Familiar with the Existing Application
	Task 3 – Update Application to Use Pocket Outlook

	Exercise 2 – Using Contact Picker to Add Searching
	Task 1 – Add Assembly References and Namespace Declarations
	Task 2 – Updating the Menu
	Task 3 – Add the Find Functionality
	Task 4 – Testing the New Functionality

	Exercise 3 – Using Telephony to Provide Automatic Dialing
	Task 1 – Add Assembly References and Namespace Declarations
	Task 2 – Updating the Menu
	Task 3 – Add Automatic Dialing
	Task 4 – Testing the New Functionality

	Exercise 4 – Using Messaging and the Picture Picker to Send
	Task 1 – Add Assembly References and Namespace Declarations
	Task 2 – Updating the Menu
	Task 3 – Using Picture Picker
	Task 4 – Using the Messaging API to E-Mail the Picture
	Task 5 – Testing the New Functionality

	Exercise 5 – Using the State and Notification Broker API to
	Task 1 – Add Assembly References and Namespace Declarations
	Task 2 – Using State and Notification Broker API to Retrieve

	Exercise 6 – Using the State and Notification Broker API to
	Task 1 – Creating the SystemState Instance
	Task 2 – Handling SystemState Change Notifications
	Task 3 – Displaying the Caller’s Contact Information
	Task 4 – Testing the New Functionality

	Lab Summary

