
TechEd05

Hands-On Lab

Lab Manual

HOL084 Visual Studio 2005

Templates and Starter Kits

Please do not remove this

manual from the lab.

Information in this document is subject to change without notice. The example companies,
organizations, products, people, and events depicted herein are fictitious. No association with
any real company, organization, product, person or event is intended or should be inferred.
Complying with all applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or introduced into a
retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written permission
of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarked, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, MS, Windows, Windows NT, MSDN, Active Directory, BizTalk, SQL Server,
SharePoint, Outlook, PowerPoint, FrontPage, Visual Basic, Visual C++, Visual J++, Visual
InterDev, Visual SourceSafe, Visual C#, Visual J#, and Visual Studio are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other products and company names herein may be the trademarks of their respective owners.

 2

VSTemplates – The new template
architecture in VS 2005*

What is a Template?

The term template in Visual Studio refers to sample projects and items that appear
in New Project/Item dialogs. These sample projects/items can be used as the base
for creating new projects and items. In other words it’s a pre-defined framework of
certain commonly used projects or items. For example in the New Project dialog in
Visual Studio you can find several project templates such as Windows Application,
Console application etc.

If you have some common code or a set of resources files that are often re-used
then creating your own template can be very useful.
As an example:
Let's say you have a system that relies on a plug-in architecture, and writing plug-
ins involves implementing multiple methods. Rather than having each programmer
rewrite the same base code from scratch, you could create a project template that
pre-populates most of the necessary code, requiring the programmer to only fill in
the details.

So by using a template, you can achieve uniformity across your whole
team/org, as well as save coding time and reduce errors.

Objectives of this HOL

Module 1 of this Lab introduces you to the new VSTemplate architecture for
templates in Visual Studio 2005 (Code name Whidbey).

The new template format (.vstemplate file) is XML based. Therefore they are easy to
read and understand as well as easy to author and customize. More details about the
VSTemplate file format are included in the Appendix, and you may want to refer to it
during the exercises.

This module will also introduce you to VS2005 Starter Kits and guide you through the
creation of your very own Starter kit! A starter kit is an enhanced project template
that can be shared with other members of the community. A starter kit includes code
samples that compile, user guidance documentation, and other helpful resources to
enable you to learn new tools and programming techniques while building useful,
real world applications. Starter kits can be sample applications for customization or
learning tools that show people how to use your products.

Module 2 introduces you to the concept of IWizard() in VS 2005. For certain types
of templates, it is necessary to show a custom UI by running custom code to collect
user input which can then be used to customize the project that is being created.
This can be achieved by implementing the IWizard() interface.

 3

You will walk through an implementation of the IWizard () interface to dynamically
customize the projects created using the templates based on user input.

What to do for more information or help
• Prasadi de Silva (prasadis@microsoft.com) and Hiren Shah

(hirens@microsoft.com) are here at TechEd 2005. We should be sitting in
one of two places: 1) right here in the HOL lab or 2) in the dev community
lounge. We'd love to talk to you. Come find us or drop us a line and we'll
come find you☺.

• Talk to the entire VS template team by sending us mail at
template@microsoft.com. We'd love to hear from you. Did you like this HOL?
What can we do to improve it?

Getting Started
• Choose HOL084 from the drop down to log in
• Create a directory called c:\VSTemplates<yourfirstname>\
• From the Start menu, choose All Programs Æ Microsoft Visual Studio 2005

Beta 2 Æ Microsoft Visual Studio 2005 Beta 2 (or you may use the shortcut
provided for you on the desktop)

When You Are Done
Please shutdown the virtual machine. This will make sure the system is ready for the
next user.

*In VS2005 only CSharp, Visual Basic and JSharp languages support the new
template architecture.

 4

mailto:prasadis@microsoft.com
mailto:hirens@microsoft.com
mailto:template@microsoft.com

Module 1 – Introductions to VS templates
and Starter Kits

Exercise 1A – Creating a Template for a project using
the Visual Studio 2005 Export Template Wizard

In this exercise you will customize a VS project, use the VS 2005 Export Template
Wizard to create a Template file for that project (including a .vstemplate) and then
use that template to create a new project. Don’t forget to start by following the steps
under the "Getting Started" section above.

Step1 – Customizing a project

i. From within Visual Studio, choose File -> New -> Project. Change the
Location field to C:\VSTemplates<yourfirstname>

ii. Then select Visual C# -> Windows from the left hand menu and choose
“Console Application”, and click OK in the dialog box. This will create a new
C# project called ColsoleApplication1.

iii. Once the project is created, double click on program.cs to open it for editing.
(You will also see the Properties and References, under the project name in
the solution explorer).

iv. In the editor, add the following code to the main method of program.cs

static void Main(string[] args)
{

Console.WriteLine("VS 2005 Templates are COOL!");
Console.ReadLine();

}

v. Choose File Æ Save Program.cs.
vi. Now hit F5 to build and run your application. You will see the console pop up

with the message VS 2005 Templates are COOL! Hit <ENTER> to continue
and close your application.

vii. Now let’s change some properties for this project:
a. Double click on the Properties node in the solution explorer to open

the Project Properties designer.
b. Choose the Build tab from the left hand menu, and choose x86 from

the drop down menu in the Platform target property as seen below.

c. Choose File->Save Selected Items to save the project

 5

Step 2 – Exporting the customized project

i. Choose File->Export Template
ii. Once the Export Template Wizard opens, choose Project Template as the

type of template you would like to create
iii. The “From which Project…” list box will default to ConsoleApplication1 as

this is the only project you have in your solution at this time. Choose
“Windows” from the “What type of project or item does this template
create?” drop down list. Hit Next.

iv. On the next page type in “MyTestTemplate” and “My Test Template” in the

Template Name and Template Description fields respectively.
v. Leave the other fields at their default value and hit Finish.
vi. Double click MyTestTemplate.zip in the explorer window that just opened. If

the explorer window does not appear automatically you can find this Zip file
under My Documents\Visual Studio 2005\My Exported Templates

vii. Open MyTemplate.vstemplate by double clicking. This is the vstemplate file
that was created by the export template wizard.

viii. Verify that the information that you provided in the template wizard is
included in the .vstemplate file. (See items in Bold below). The rest of the
Data was inferred by the Wizard

 6

<TemplateData>

 <Name>MyTestTemplate</Name>
 <Description>My Test Template</Description>
 <Icon>__TemplateIcon.ico</Icon>
 <ProjectType>CSharp</ProjectType>
 <ProjectSubType>Windows</ProjectSubType>
 <SortOrder>1000</SortOrder>
 <CreateNewFol teNewFolder> der>true</Crea
 <DefaultName>MyTestTemplate</DefaultName>
 <ProvideDefaultName>true</ProvideDefaultName>
 <LocationField>Enabled</LocationField>

 <EnableLocationBrowseButton>true</EnableLocationBrowseButton>
 </TemplateData>

ix. Choose File->Close Solution to clean up the VS shell before we begin Step

3. Choose No if you are presented with the “Save Changes to the following
items?” dialog.

Step 3 – Using the customized project template to create a new
project

i. Choose File->New->Project. You will see that the project template you just
created now appears under My Templates!

 7

ii. Choose MyTestTemplate and hit OK
iii. Once the project MyTestTemplate1 is created, double click on program.cs

to open it for editing.
iv. Verify that the code you added as part of Step1.iv is included inside

program.cs file for this project.
v. Verify that the change you made to Build properties is available by default for

this project (Double click on Properties to open the Project Properties
designer, choose the Build tab and verify that the Platform Target property
is set to X86)

Creating a template for your project was that easy!

 8

Exercise 1B – Creating a Template for an item using
the Visual Studio 2005 Export Template Wizard

In this exercise you will customize a VS item and use the VS 2005 Export
Template Wizard to create a template file for that item which includes a .vstemplate
file.

In VS 2005, you can create templates not only for projects but for individual items as
well. This is very useful in the event that you wish to share code, resources or other
information across projects in the form of a class file, resource file or text file etc.
The process for exporting items is similar to the method in which you created the
project template in Exercise 1A.
In this example we will create a class file with the copyright information for you
company built in.

i. Right click on the project (MyTestTemplate1) that you created in
Excercise1A and choose ADD->New Item

ii. Choose Class from the “Visual Studio installed templates” and type in
“MyClass1.cs” in the Name field. Click ADD

iii. Double click on MyClass1.cs and make the following modifications:

//File name <Insert Name>
//
//Copyright <Your Company name> ©2005
//

iv. Choose File->Save MyClass.cs
v. Choose File->Export Template
vi. Once the Export Template Wizard opens, choose Item Template as the

type of template you would like to create. The “From which Project…” list box
will default to MyTestTemplate1 as this is the only project you have in your
solution at this time. The “What type of project or item does this template
create?” box will be grayed out. Hit Next.

 9

vii. On the next page type check MyClass1.cs as the item that you wish to
export. Hit Next.

viii. In the Select Item References page you can choose to add additional
references. These references will be added to the project when you use this
template to add an item to your project. For project templates the references
are already included in the project file, therefore no additional references
need to be added at export time.
Hit Next.

ix. On the next page type in “MyClassTemplate” and “My Test Class Template” in
the Template Name and Template Description fields respectively.

x. Leave the other fields at their default value and hit Finish.
xi. An explorer window will open, containing MyClassTemplate.zip and

MyTestTemplate.zip. If the explorer window does not appear automatically
you can find the Zip files under My Documents\Visual Studio 2005\My
Exported Templates. Double click MyClassTemplate.zip to view the
contents.

xii. Open MyTemplate.vstemplate by double clicking. This is the .vstemplate
file that was created for the Class1.cs item by the export template wizard.

xiii. Verify that the information that you provided in the template wizard is
included in the .vstemplate file. (See items in Bold below). The rest of the
Data was inferred by the Wizard

 10

 <TemplateData>
 <Icon>__TemplateIcon.ico</Icon>
 <DefaultName>MyClassTemplate</DefaultName>
 <Name>MyClassTemplate</Name>
 <Description>My Test Class template</Description>
 <ProjectType>CSharp</ProjectType>
 <SortOrder>10</SortOrder>

 </TemplateData>

If you added any references in step viii, you will see these in the
<TemplateData> section of the .vstemplate.

xiv. Switch back to VS 2005 IDE and right click on the project name and choose

Add->New->Item. When the item templates pop up, verify that
MyClassTemplate shows up under My Templates. You can now add this
item to any project!

xv. Choose File->Close Solution to clean up the VS shell before we begin Step
3. Choose No if you are presented with the “Save Changes to the following
items?” dialog.

The above exercises give some very simple examples of how you can use the new VS
Template architecture to create your own custom files. The VS Template architecture
can be used for much more complicated and complex scenarios. For example you
can create multi project templates which contain a collection of projects that can be
used to instantiate solutions. You can find more information about multi project
templates in the Appendix here.

 11

Exercise 3 – Creating a Starter Kit

A starter kit is essentially an enhanced project template that can be shared with
other members of the community. It’s built on the same VS Template architecture.

VVSSTTeemmppllaattee AArrcchhiitteeccttuurree

SSttaarrtteerr
KKiittss

BBaassiicc
PPrroojjeecctt

TTeemmppllaatteess

BBaassiicc
IItteemm

TTeemmppllaatteess

A starter kit includes code samples that compile, user guidance documentation, and
other helpful resources to enable you to learn new tools and programming
techniques while building useful, real world applications.

In this exercise you will use an existing solution to create a template, make some
modification to the .vstemplate file and add user guidance documentation to
complete the starter kit.

Step 1 – Opening and using the base project for the Starter Kit

i. From within Visual Studio, choose File -> Open -> Project/Solution.
Browse to C:\HOL084\Module1\DVDProject

ii. Then select DVDProject.sln and click OPEN in the dialog box. This will open
up the existing project as DVDProject

iii. Hit F5 to start the application. You will see that it’s an application that can
store information about your DVD collection.

 12

Feel free to play with the application further if you wish. When you finish click
on the little X in the top right hand corner to close the application.

Step 2 – Adding user guidance documentation

Clearly if you wished other users to use this application some documentation would
be very useful. Well let’s add it!

i. Right Click on the Documentation node in the solution explorer and choose

Add->Existing Item
ii. When the dialog box opens browse to

C:\HOL084\Module1\DVDProject\DVDProject\Documentation. Make
sure you select “All Files (*.*) in the “Files of Type” drop down menu.

iii. Select Getting Started Tutorial.htm and click Add. This document contains
all the documentation necessary to get the users started with this application.
To view the document right click on Getting Started Tutorial.htm in the
solution explorer and select View in Browser. The contents of the htm file
will open in an Internet Explorer window. Close the IE window when you have
finished reading the document.

 13

Step 3 – Exporting the project as a template to be used for the
Starter Kit

In order to create the starter kit we need to first create a template out of the
existing project. We will use the same process used in Step2 of Exercise 1A.

i. Choose File->Export Template
ii. Once the Export Template Wizard opens, choose Project Template as the

type of template you would like to create
iii. The “From which Project…” dialog will default to DVDProject as this is the

only project you have in your solution at this time. Leave the default
<General> in the “What type of project or item does this template create?”
drop down list. Hit Next.

iv. On the next page type in “MyDVDTemplate” and “My DVD Collection
Template” in the Template Name and Template Description fields
respectively.

v. Leave the other fields at their default value and hit Finish.
vi. Verify that the export succeeded and MyDVDTemplate.zip has been created

inside explorer window that just opened. If the explorer window does not
appear automatically you can find this Zip file under My Documents\Visual
Studio 2005\Templates\ProjectTemplates\Visual C#

Step 4 – Modifying the .vstemplate file to enhance the user
experience with the starter kit

Let’s make sure that the user guidance documentation is readily discoverable by the
user

i. To modify the .vstemplate file for the MyDVDTemplate template we need to
first extract the contents of the .zip file. For your convenience the files have
already been extracted to C:\HOL084\Module1\DVDTemplateExtracted

ii. Open MyTemplate.vstemplate in this folder by double clicking. This is the
vstemplate file that was created by the export template wizard.

iii. Find the line containing the name Getting Started Tutorial.htm of the
documentation we added in Step 2.iii. The entry will look like this:

<Folder Name="Documentation">

<ProjectItem ReplaceParameters="true" TargetFileName="Getting Started
Tutorial.htm">GETTIN~1.HTM</ProjectItem>

iv. Modify this line to include OpenInWebBrowser=”true” after the

<ProjectItem tag as follows:

<Folder Name="Documentation">

<ProjectItem OpenInWebBrowser="true" ReplaceParameters="true"
TargetFileName="Getting Started Tutorial.htm">GETTIN~1.HTM</ProjectItem>

This tag will ensure that the htm file will open by default when the user
creates a new project from your template.

v. Choose File->Save MyTemplate.vstemplate

 14

vi. Choose File->Close Solution to clean up the VS shell before we begin Step 5.
Choose Yes if you are presented with the “Save Changes to the following
items?” dialog

Step 5 – Final packaging and placement of the new starter kit

i. Now we need to zip up the contents once more with the modified .vstemplate
file. To do this select all the files within
C:\HOL084\Module1\DVDTemplateExtracted by selecting CTRL+A.
Then right click and select Send to->Compressed (zipped) Folder. This
will create a .zip file within the same folder.

ii. Depending on the file that you selected when compressing the folder the
name of your ZIP folder maybe different so rename the .zip folder to
MyDVDCollection.zip. This step is not required but useful for consistency.

iii. Move the MyDVDCollection.zip file to My Documents\Visual Studio
2005\Templates\ProjectTemplates\Visual C#. This step is required in
order for your template to be available to the File->New Project dialog.

Congratulations! You have just completed creating your first starter kit!

 15

Step 6 – Using the new starter kit

i. From within VS 2005 Choose File->New->Project. You will see that the
project template you just created now appears under My Templates!

ii. Choose MyDVDCollection and hit OK. You will notice that the Getting
Started Tutorial.htm opens in the shell by default. So now it’s very easy for
users to start using and customizing this starter kit!

iii. Verify that the application still works by hitting F5 and running it.

Step 7 – Creating .vsi file for the starter kit

VS 2005 makes it very easy for you to share starter kits that you create with the
community.

The community installer that ships with VS 2005 allows you to easily install a variety
of packages in the .vsi format such as starter kits, code snippet and add-ins. The .vsi
file format allows the content of these items to be packaged up in a format that is
recognized by the community installer. For starter kits the .vsi file is essentially a zip
files that also contain a metadata file called the VSContent file.

 16

i. Locate the MyDVDCollection.zip file that was created in Step 5.ii for your
starter kit in My Documents\Visual Studio
2005\Templates\ProjectTemplates\Visual C#.

ii. Open another instance of VS 2005 by using the short cut on your desktop and
choose File->New->File->XML File to open a blank xml file. (For the
purpose of this exercise it is important that you use the Visual Studio XML
editor due encoding issues)

iii. Replace the contents of that file with the following:

<VSContent xmlns="http://schemas.microsoft.com/developer/vscontent/2005">
 <Content>
 <FileName>MyDVDCollection.zip</FileName>
 <DisplayName>My DVD Starter Kit</DisplayName>
 <Description>DVD collection starter kit</Description>
 <FileContentType>VSTemplate</FileContentType>
 <ContentVersion>1.0</ContentVersion>
 <Attributes>
 <Attribute name="TemplateType" value="Project"></Attribute>
 <Attribute name="ProjectType" value="Visual C#"></Attribute>
 <Attribute name="ProjectSubType" value=""></Attribute>
 </Attributes>
 </Content>
</VSContent>

iv. Choose File->Save Xml1.xml As and browse C:\Documents and

Settings\Administrator\My Documents\Visual Studio
2005\Templates\ProjectTemplates\Visual C#. Type in DVD.vscontent
in the File name text box. Make sure you select “All Files (*.*) in the Save
as Type drop down list.

v. CTRL+ Click DVD.vscontent and MyDVDCollection.zip to select them
vi. Right click and select Send To->Compressed (zipped) Folder. This will

create a DVD.zip file in your folder. (If you are getting errors while executing
this step, make sure your Mouse pointer is over the DVD.vscontent file before
you right click)

vii. Rename this .zip file to DVD.vsi

 17

Step 8 – Using the content installer to install your starter kit

You can now share the.vsi file for the starter kit that you created in Step 6 with
anyone who’s got Visual Studio 2005 installed. They just need to double click on the
.vsi file to install it.

i. The content installer will install the starter kit in \My Documents\Visual
Studio 2005\Templates\ProjectTemplates\ folder. Therefore delete the
MyDVDCollection.zip file from the \My Documents\Visual Studio
2005\Templates\ProjectTemplates\Visual C# folder so that you can
observe the behaviour of the content installer.

ii. Double click on the DVD.vsi. This will bring up the Visual Studio Content
Installer wizard.

iii. My DVD Starter Kit will be selected by default in the window and hit Next.
iv. For the purpose of this exercise click Yes on the No Signature Found

message box. (This is shown because the .vsi file that you created is not
signed. For deploying your .vsi files in a real world scenario you sign your
package)

 18

v. On the next page hit Finish to complete the installation. (If you see a
Rename Item dialog box, it may be because you did not delete the
MyDVDCollection.zip file in Step7.i)

vi. Verify that the installer indicates that the Installation complete
successfully. Click Close to dismiss.

vii. Browse back to My Documents\Visual Studio
2005\Templates\ProjectTemplates\Visual C# and verify that
MyDVDCollection.zip is now present. This template is once again available
in the File->New->Project dialog under My templates.

 19

Module 2 Customizing Templates by
Creating an IWizard () Implementation

Introduction to IWizard () interface

In VS 2005, a new template architecture called “VSTemplate” is introduced. This
new architecture and template file format make creating new templates and
modifying existing ones very easy. For more information on VSTemplate architecture
and how to create you own templates see “Module 1” of this lab.

For certain types of templates, you may wish to show a custom UI by running
custom code to collect user input which can then be used to customize the project
that is being created. This can be achieved by implementing the IWizard () interface
currently defined in Microsoft.VisualStudio.CommonIDE.dll.***

As an example, the IWizard() implementation you will work with in this module pops
up a User Input Form as shown below when a user creates a new project using a
user “Console Application” template which calls the IWizard() implementation. This
Form asks users to provide two inputs and the resulting “Console Application” project
will be customized based on these inputs when the user hits “Create Project” on the
following Form.

 20

The dll in which the IWizard() interface is defined is scheduled to be changed for final release of Visual
Studio 2005. For the final release, it may not be defined in Microsoft.VisualStudio.CommonIDE.dll

***Note:

Objectives

This module uses Visual Studio Automation object model (DTE) to
programmatically interact with various components of VS. If you are not familiar with
DTE object model you can find the documentation for it on MSDN but is not
necessary to do so to accomplish the tasks in this module. The high level summary
of steps you will perform is as follows.

1) Create a project using the IWizard() starter kit included in this lab. At this
point you will have a working IWizard() implementation. The IWizard() starter
kit is designed to perform two different customizations on a “Console
Application” project based on user input. One of the customizations is already
implemented and you will implement the second customization. The details of
the customizations are provided in STEP 1.V.

2) Create a “Console Application” template that calls this IWizard()
implementation.

3) Create a project using the “Console Application” template to see the IWizard()
implementation getting called and perform the customization.

4) Understand the code for one of the customizations.
5) Implement the second customization and see it in action.

STEP 1 – Create a project using the IWizard()
Starter Kit.

i. First let’s perform some steps to ensure that we start in a clean state and are
not affected by the templates created by previous users of this lab. For this:

a. If you already don’t have an instance of VS 2005 IDE running, launch

VS 2005 (There is a shortcut for this on the desktop.)
b. Once the IDE loads, using My Computer or Windows Explorer browse

to the location:
My Documents\Visual Studio 2005\Templates\Project
Templates\Visual C#.

This is the location where user templates for C# are stored.

c. Delete any template zip files you find in this folder.

ii. Now, copy the IWizard() starter kit template zip file called
IWizardStarterKit.zip, from C:\HOL084\Module2 to user template
location: My Documents\Visual Studio 2005\Templates\Project
Templates\Visual C#.

iii. From within the IDE, choose File -> New -> Project. Select the “Visual

C#” node in the New Project dialog. You will see a template called
“IWizardStarterKit” under “My Templates” section in new project dialog.
Select this template.

 21

iv. Change the project location to C:\VSTemplates<yourfirstname>\.
Change the name of your project to MyIWizard<yourname>. Create the
project.

v. Let’s understand the project contents a little bit. The project is essentially a

class library project and it contains a class in the file called
IWizardImplementation.cs which implements the IWizard() interface. The
code in IWizardImplementation.cs file shows up a Form as shown before
called UserInputForm which asks the user for the following two inputs for
customization.

a. The user can choose whether or not a class file should be added as an
item to the project or not. This serves as an example of adding items
to the project dynamically based on user input using the DTE.

b. The user can provide the name for the EXE file that gets created when
the project is built. With this customization the user can choose to
name the EXE file different than the project name. This serves as an
example of accessing and changing project properties through DTE
based on user input.

Once the user provides the above input, we use DTE to perform these
customizations on the Console Application project that is getting created.

vi. Build the project. To do this, choose the MyIWizard<yourname> node in
Solution Explorer in the IDE, right click and select Build option in the
context menu.

VS requires that the dll containing the IWizard() implementation be in one of
four designated location. One such location is the VS installation folder that
contains devenv.exe. The project contains a post-build event which copies the
output dll for the project in the folder containing devenv.exe in addition to
creating the output dll in the project bin folder. Verify that you have a dll called
MyIWizard<yourname>.dll in the VS installation folder: C:\Program
Files\Microsoft Visual Studio 8\Common7\IDE.

At this point you have a working IWizard() implementation dll and it is in the
right location so that it can be called by any template.

 22

STEP 2- Creating a Console Application Template that
calls the IWizard() implementation

i. Once you create an IWizard() implementation you need to create a template,
the .vstemplate file which contains the following <WizardExtension>
section.*** This section in the .vstemplate file points VS to the appropriate
IWizard() dll you created in STEP 1.

<WizardExtension>

<Assembly>MyIWizard<yourname>.dll</Assembly>
<FullClassName>MyIWizard<yourname>.WizardImplementation</FullClassName>

</WizardExtension>

ii. For your convenience, the IWizard() starter kit you used to create the

implementation does contain a template “MyConsoleApplicationTemplate”
in an un-zipped form. Look for a folder “MyConsoleApplicationTemplate”
in Solution Explorer under the node for your project. Within this folder look
for a file MyTemplate.vstemplate. Double-click on this file in Solution
Explorer to open it in VS XML Editor. This file should have the
<WizardExtension> section as shown above.

For security reasons, the final release of VS 2005 will require you to include a fully qualified strong name for your IWizard()
assembly in the <WizardExtension> section as follows. Unqualified names as shown above will not be permitted.

<Assembly>MyIWizard<yourname>.dll, Version=8.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a</Assembly>

***Note:

iii. Now, you need to zip this template up and put it in the user template

location. To do this,

a. Browse to
C:\VSTemplates<yourfirstname>\MyIWizard<yourname>\MyI
Wizard<yourname>\MyConsoleApplicationTemplate.

b. Once inside MyConsoleApplicationTemplate, hit Ctrl-A to select all
the files, right click and choose Send to -> Compressed (zipped)
Folder. Re-name the zip file created to
MyConsoleApplicationTemplate.zip.

c. Copy this zip file to the user template location:
My Documents\Visual Studio 2005\Templates\Project
Templates\Visual C#.

 23

STEP 3 –Create a project using the Console
Application Template and see the IWizard()
implementation in action.

i. Launch another instance of VS IDE in addition to the instance that contains

your IWizard() implementation project MyIWizard<yourname>.

ii. Select File -> New -> Project.

iii. Select the C# node and you should see the “MyConsoleApplication”
template available in the “My Templates” section along with the
IWizardStarterKit template. Select the MyConsoleApplication template.

iv. Change the location field to C:\VSTemplates<yourfirstname> location and

hit OK to create the project.

You should see the UserInput form shown in the introduction section of the
lab. The IWizard() implementation that is referenced in the Console
Application template launches this Form.

v. With the default values selected in the Form, hit “Create Project”. You will

see that the Console Application project that is created will contain a file
Class.cs in the project because you selected to include a class file.

Remember the second customization which renames the EXE is not coded up
yet and hence when you build this project instead of creating an EXE called
“MyConsoleAppEXE” it will create an EXE with the project name. We will
implement the code for this as part of STEP 5.

vi. You can create another project using the same Console Application template

and this time choose not to include a Class file and verify that the class file
does not get included in the project.

STEP 4 – Understanding the Code

The WizardImplementation class in the IWizardImplementation.cs file implements
the IWizard() interface. Two of the methods defined in IWizard() interface are
implemented in the class: The RunStarted() method and
ProjectFinishedGenerating()method.

The RunStarted() method gets called when the user instantites the template before
the project is created from the template. Hence collection of user input should be
done here. The RunStarted() method shows the UserInput Form to the user and
collects the input for the two customizations outlined above. The rest of the code in
the implementation is about performing the customizations which are performed
after the project is created in the ProjectFinishedGenerating() method.

The first customization performed in the ProjectFinishedGenerating() method is to
add a class file based on user’s input. The ProjectFinishedGenerating() method is
called after the template engine creates a project from the template. And the

 24

method is then called with the newly created DTE project object as an argument.
Hence, from this object you can use project.ProjectItems.AddFromTemplate()
method to add additional items to the project based on user input.

STEP 5 – Implement the other Customization

The customization that we want to do is to rename the EXE that gets created for the
Console Application project based on the user’s input. This is an example of changing
Project properties on the fly through the IWizard() implementation.

i. The code for this is very simple. Switch to the IDE instance which contains

your IWizard() project, MyIWizard<yourname>. In the file
IWizardImplementation.cs, inside method ProjectFinishedGenerating
you will see comments for placing the code for #Customization 2. Insert the
following lines of code there.

 // Customization #2. Changing a project property based on user’s
 input.
 // Please insert the code for customization #2 here.
 EnvDTE.Property p = project.Properties.Item("AssemblyName");
 p.Value = exeName;

ii. Now, rebuild your IWizard()project, so that the dll in the devenv.exe folder
gets updated. To do this, choose the project node in Solution Explorer in the
IDE, right click and select Rebuild***

iii. To verify the above customization works, create another project in the other

instance of the IDE using the “MyConsoleApplication” template as
described in STEP 3. This time when you build the Console Application project
created, the EXE that is generated should be named “MyConsoleAppEXE”
rather than the name of the project itself.

iv. Launch the Project Properties Designer by right clicking on the node for your

project in Solution Explorer and selecting properties. You can verify in the
Application page of the Project Properties Designer that the
“AssemblyName” property is set to “MyConsoleAppEXE” instead of the
name of the project.

***Note:

If you see a build error during this step, make sure that you close all other instances of the VS 2005 IDE and try the build action
again. This error may appear due to a known Beta 2 issue.

 25

Appendix – VSTemplate File Format

VSTEMPLATE File Format for Project Templates

.VSTEMPLATE project templates consist of three fundamental elements:
• Identity Descriptor
• TemplateData
• TemplateContent

Example:

<VSTemplate Type=”Item” Version="2.0.0">

<TemplateData>
…

</TemplateData>
<TemplateContent>

…
</TemplateCntent>
<WizardExtension>
 …
</WizardExtension>

</VSTemplate>

Identity Descriptor
This element identifies the template and specifies its version.

Example:

<VSTemplate Type=”Project” Version="2.0.0">

…
</VSTemplate>

Description:

Element Required Default Attributes Description
VSTemplate Yes n/a Version. Format= “n.n.n”

TemplateType=”Project”
or “ProjectGroup”
Any version of format
“2.n.n” will work with
VS2005.

Identifies the file as a project
template

TemplateData
This element contains meta-information about the template which is used to categorize it and define its
display characteristics in the New Project dialog. Localizable/embedded information such as the template
name and icon can optionally be specified in the file (as a string) or can be contained in a VS Package
which the template refers to. Other options control how the dialog appears, whether a base name is
provided, what the sort order is in the dialog and other display options.

Simple Example:

Defaults will be used for all elements not specified, so the .vstemplate file can be very simple.

 26

 <TemplateData>
 <Name>WindowsApplication</Name>
 <Description>A windows user interface application</Description>
 <Icon>WindowsApplication.ico</Icon>
 <ProjectType>CSharp</ProjectType>
 <SortOrder>10</SortOrder>
 <DefaultName>WindowsApplication</DefaultName>
 </TemplateData>

Advanced Example#1:

Alternatively the user can specify elements to get the dialog to appear as desired.

 <TemplateData>
 <Name>WindowsApplication</Name>
 <Description>A windows user interface application</Description>
 <Icon>WindowsApplication.ico</Icon>
 <ProjectType>CSharp</ProjectType>

<ProjectSubType>Windows</ProjectType>
<SortOrder>10</SortOrder>

 <CreateNewFolder>false</CreateNewFolder>
 <ProvideDefaultName>false</ProvideDefaultName>
 <PromptForSaveOnCreation>false</PromptForSaveOnCreation>
 <EnableEditOfLocationField>true</EnableEditOfLocationField>
 <EnableLocationBrowseButton>false</EnableLocationBrowseButton>
 </TemplateData>

TemplateData Description

Element Required Default Attributes Description
TemplateData Yes Element containing the

metadata for the template
Name Yes Package – the VS

Package GUID
ID – the ID of the
string resource

Specifies the project name
to appear in the NPD1 as a
string.

Description Yes Package – the VS
Package GUID
ID – the ID of the
string resource

Specifies the description to
appear in the NPD as a
string.

Icon Yes Package – the VS
Package GUID
ID – the ID of the
icon resource

Specifies the icon to appear
in the NPD as a string.

ProjectType Yes The type of the template.
Possible values include:

• CSharp
• VisualBasic
• JSharp
• VisualC

ProjectSubType No The type of the template.
Possible values include:

• Windows
• Office
• Database
• Smart Devices
• Web

1 NPD – abbrev. for New Project Dialog

 27

SortOrder No 100 Template order in NPD. For
MS and VSIP authored
templates only. User
templates have mandatory
alphabetical sort order.

CreateNewFolder No True Whether a containing folder
is created on instantiation

DefaultName No The DefaultName in the
Name file in the NPD, ex:
ClassLibrary

ProvideDefaultName No False Whether to provide a default
DefaultName for the project
in the name field

AllowCreationWithoutSave No True Whether the project
supports being a ‘temporary’
in-memory project

EnableLocationBrowseButton No True Whether the user can
browse to a different
directory to create the
solution

Hidden No False Specifies that the template
should not appear in the
New Project Dialog. If
specified, no other elements
inside <TemplateData> are
required

NumberOfParentCategoriesToRollUp No 0 Display the template in
parent categories (roll up
display). Not respected for
user templates.

Web Projects

Web projects are unusual in a few ways. First, web projects appear in a separate dialog, the Add New
Website dialog. Likewise, Web Project Items appear in the Add New Web Item dialog. In these dialogs,
items are them subcategorized by language. To get items to appear in this dialog, use the following logic.
Set <ProjectType> to Web and set <ProjectSubType> to Language. Note this is the reverse of normal
configuration, where <ProjectType> is set to language and <ProjectSubType> is set to the technology
type (e.g. Windows, Office).

Example:

<VSTemplate Version="1.1.1" Type="Project">
 <TemplateData>
 <Name Package="{39c9c826-8ef8-4079-8c95-428f5b1c323f}" ID="3326" />
 <Description Package="{39c9c826-8ef8-4079-8c95-428f5b1c323f}" ID="3327"/>
 <Icon Package="{39c9c826-8ef8-4079-8c95-428f5b1c323f}" ID="4701"/>
 <ProjectType>Web</ProjectType>
 <ProjectSubType>CSharp</ProjectSubType>
 <SortOrder>30</SortOrder>
 <CreateNewFolder>true</CreateNewFolder>
 <DefaultName>WebSite</DefaultName>
 <ProvideDefaultName>true</ProvideDefaultName>
 <PromptForSaveOnCreation>true</PromptForSaveOnCreation>
 <EnableEditOfLocationField>true</EnableEditOfLocationField>
 <EnableLocationBrowseButton>true</EnableLocationBrowseButton>
 <LocationField>hidden</LocationField>
 </TemplateData>

Second, in the new web project system, web projects no longer have a project file. Therefore web project
templates only need to contain a dummy project file. This allows them to be handled by the standard
template engine and still create a website. Therefore a website template would look like this.

 28

Example:

 <TemplateContent>
 <Project File="PersonalWebSite.webproj" ReplaceParameters="true">
 <ProjectItem ReplaceParameters="true" OpenInEditor="true"

OpenOrder="10">Albums.aspx</ProjectItem>
 <ProjectItem ReplaceParameters="true">Albums.aspx.cs</ProjectItem>
 <ProjectItem ReplaceParameters="false">Default.aspx</ProjectItem>
 <ProjectItem ReplaceParameters="true">Default.aspx.cs</ProjectItem>
 <ProjectItem ReplaceParameters="true">Default.master</ProjectItem>
 <ProjectItem ReplaceParameters="true">Default.master.cs</ProjectItem>
 …
 </Project>
 </TemplateContent>
</VSTemplate>

Finally, in some cases a user may want to create an item. If you wish to create an item which has code-
behind and you want to place the code in the /code directory, you will need to do one special step. You
can specify that a file should be dropped in a root directory by specifying placing a “\” in front of the path,
e.g. “\code\login.aspx”. Otherwise if you leave the slash off, e.g. “code\login.aspx”, then the file will be
placed in the /Code directory.

 <TemplateContent>
 <ProjectItem ReplaceParameters="true">Login.aspx</ProjectItem>
 <ProjectItem ReplaceParameters="true">\code\Login.aspx.cs</ProjectItem>
 …
 </TemplateContent>
</VSTemplate>

Using VS Packages for resources

The <Name>, <Description> and <Icon> identifiers can either be provided with the template, like this:

 <TemplateData>
 <Name>WindowsApplication</Name>
 <Description>A windows user interface application</Description>
 <Icon>WindowsApplication.ico</Icon>
 …

</TemplateData>

Or can point off to a VS package which contains the localized strings and the icon file, like this:

 <TemplateData>
 <Name Package="{164B10B9-B200-11D0-8C61-00A0C91E29D5}" ID="3000" />
 <Description Package ="{164B10B9-B200-11D0-8C61-00A0C91E29D5}" ID="3001" />
 <Icon Package="{164B10B9-B200-11D0-8C61-00A0C91E29D5}" ID="4500" />
 …

</TemplateData>

Hidden Templates

 29

Some template creators have the requirement that they be able to create templates which exist on disk
but which do not appear in the New Project or Add New Item dialogs. The <Hidden> element can be used
to hide these templates from view. When used, no other elements are required. This element can be
specified for project templates or item templates. It is most commonly used for item templates which are
hidden from view but accessed programmatically by different functions in the IDE to add project items
when required, e.g. to add a .RESX file.

 <TemplateData>
 <Hidden>True<Hidden>
 </TemplateData>

Sort Order

The SortOrder tag, which determines the Sort Order in the New Project dialog (i.e. which template comes
1st, 2nd, 3rd, etc.). This tag is only used for internally (VS or VSIP) produced templates. For any templates
which are identified as user-authored (i.e. not installed under Program Files) this tag will be ignored and
the template will be sorted alphabetically.

 <TemplateData>

 …
 <SortOrder>10</SortOrder>
 …
 </TemplateData>

Getting templates to appear in a root category

Some template creators for Visual Studio-shipped templates will want these templates to not only appear
in a category but also to appear under a root category- for instance, C# would like the Class Library
template to appear under Windows templates, but also under general C# templates. To enable this, add
the <DisplayInParentCategories> tag to your template. This tag is only used for internally (VS or VSIP)
produced templates. For any templates which are identified as user-authored (i.e. not installed under
Program Files) this tag will be ignored and the template will only appear in per its <ProjectType> and
<ProjectSubType>.

 <TemplateData>
 <DisplayInParentCategories>True</DisplayInParentCategories>
 </TemplateData>

TemplateContent
This element defines the content for the template. It consists of a project which contains project items

Simple Example:

<VSTemplate Type=”ProjectGroup” Version=”2.0.0” />
 <TemplateContent>
 <Project File=”Application.csproj” ReplaceParameters=”true”>
 <ProjectItem ReplaceParameters="true">Form.cs</ProjectItem>
 <ProjectItem>File.cs</ProjectItem>

</Project>
 </TemplateContent>

 30

TemplateContent Description

Element Required Default Attributes Description
TemplateContent Yes Element containing the content for the

template
ProjectCollection No A collection of links to other templates.

Used for multi-project templates.
ProjectTemplateLink No ProjectName A link to another project template (by

.vstemplate file) to use in the
collection.

Folder No Name Containing solution folder. If specified a
folder will also be created on disk.

Project File
TargetFileName
ReplaceParameters

The project file for the template. May
be multiple.

ProjectItem Yes TargetFileName
ReplaceParameters
OpenInEditor
OpenOrder
OpenInWebBrowser
OpenInHelpBrowser

An item in the project. NOTES:
OpenInHelpBrowser exists to open
HTML files and text files which are local
to the project. We should always open
these files in the help browser. None of
the following are supported for
OpenInWebBrowser or
OpenInHelpBrowser:
- opening any non-HTML or non-text
file
- supporting OpenOrder
- opening external (http:// address)
websites

If OpenInHelpBrowser is present the
OpenInEditor and OpenOrder tags
should be ignored.

CustomParameters No Name Any custom parameters which should
be passed to the wizard when it is run
to do parameter replacement.

CustomParameter No Name
Value

A custom parameter (name/value pair)
to pass to the wizard

Folders

The <Folder> element is no longer required for specifying folders inside of projects. Users can ZIP up
projects containing folders. The following is an example of how items for a project with folders should be
specified in a .vstemplate file. In this example, the user would create a project containing folders. On
save, the project will contain physical folders on disk. The user can compress the project as-is. On project
create from a template, the folder structure will be recreated based on the template project.

Example:

 <TemplateContent>
 <Project File=”WindowsApplication.csproj” ReplaceParameters=”true”>
 <ProjectItem ReplaceParameters="true">File1.cs</ProjectItem>
 <ProjectItem>Icon.ico</ProjectItem>
 <ProjectItem>Web
References\net.xmethods.www\Reference.cs</ProjectItem>
 <ProjectItem>Web
References\net.xmethods.www\Reference.map</ProjectItem>
 <ProjectItem>Web
References\net.xmethods.www\TemperatureService.wsdl</ProjectItem>

</Project>
 </TemplateContent>

However, if desired a user can use the <Folder> tag to specify either Solution Folders (folders which contain
projects) or project folders (folders which contain items). More information on the latter is below.

 31

Multi-Project Templates

In Beta2 Project Templates will support multi-project templates. This is done by specifying all the Projects.
Note that this template can be used either to create new projects or to add projects to an existing
solution. A template can only be a container template or a single project template. It can contain links to
several other projects or a project. It cannot contain both. The user can specify a solution folder structure
in the XML. If specified the project wizard will create a folder structure on disk mimicking the solution
folder structure. The projects created will be named according to whatever the project file is named in the
template. This means that what the user enters in the Name field on the New Project Dialog will be
ignored.

Note that in the ZIP file, the ZIP file should be structured to place all sub-templates in folders, with the
root vstemplate at the too

Example:

<TemplateData>
 …
</TemplateData>
<TemplateContent>
 <ProjectCollection>

<ProjectTemplateLink
ProjectName="Project1"> Project1\MyTemplate.vstemplate</ProjectTemplateLin>
<ProjectTemplateLink
ProjectName="Project2"> Project2\MyTemplate.vstemplate</ProjectTemplateLin>

 </ProjectCollection>
</TemplateContent>

Folder structure:

ProjectCollection.vstemplate
|_Project1Folder
| |_Project1.vstempalte
| |_other files
|_Project2Folder
| |_Project2.vstempalte
| |_other files
|_Project3Folder
 |_Project3.vstempalte
 |_other files

Note that the <SolutionFolder> element can be used to specify solution folders which contain projects.

Example:

<TemplateData>
 …
</TemplateData>
<TemplateContent>
 <ProjectCollection>
 <SolutionFolder Name=”ClientUI” >
 <ProjectTemplateLink

 ProjectName="Project1">Project1\MyTemplate.vstemplate< /ProjectTemplateLin>
<ProjectTemplateLink
 ProjectName="Project2"> Project2\MyTemplate.vstemplate</ProjectTemplateLin>

 </SolutionFolder>
 </ProjectCollection>
</TemplateContent>

Setting the name of a file using a parameter

In some cases a user may want to set the name of a file based on an inputted parameter. This is
supported using the <TargetFileName> element. The following is an example of how to rename a file
contained in a project.

 32

Example:

 <Project>
 <ProjectItem TargetFileName= “$projectname$.exe”>File1.exe</ProjectItem>
 …
 </Project>

Opening a file, including opening in a HTML or Help Viewer

In some cases a user may want to open a specific file on project create such as a code file or HTML
documentation file. The following are examples of how to do so:

Open Code File Example:

 <TemplateContent>
 <Project File=”ClassLibrary.vbproj” ReplaceParameters=”true”>
 <ProjectItem ReplaceParameters=”true” OpenInEditor=”true”
OpenOrder=”10”>Class1.vb</ProjectItem>
 …
 </Project>
 </TemplateContent>

Open HTML File in Help Browser Example:

 <TemplateContent>
 <Project File=”ClassLibrary.vbproj” ReplaceParameters=”true”>
 <ProjectItem ReplaceParameters=”true” OpenInEditor=”true” OpenOrder=”10”

OpenInHelpBrowser=”true”>Class1.vb</ProjectItem>
 …
 </Project>
 </TemplateContent>

 33

VSTEMPLATE File Format for Item Templates
.VSTEMPLATE item templates consist of three fundamental elements:

• Identity descriptor
• TemplateData
• TemplateContent

Example:

<VSTemplate Type=”Item” Version="2.0.0">

<TemplateData>
…

</TemplateData>
<TemplateContent>

…
</TemplateContent>

</VSTemplate>

Identity Descriptor
This element identifies the template and specifies its version.

Example:

<VSTemplate TemplateType=”Item” Version="2.0.0">

<TemplateData>
…

</TemplateData>
<TemplateContent>

…
</TemplateContent>

</VSTemplate>

Description:

Element Required Default Attributes Description
VSTemplate Yes n/a Version. Format= “n.n.n”

TemplateType=”Item”
Any version of format
“2.n.n” will work with
VS2005.

Identifies the file as a project item
template

TemplateData
This element contains meta-information about the template which is used to categorize it and define its
display characteristics in the Add New Item dialog.

Example:

 <TemplateData>
 <Name>Class</Name>
 <Description>An empty class file</Description>
 <Icon>Class.cs</Icon>
 <ProjectType>CSharp</ProjectType>

<SortOrder>30</SortOrder>
 <DefaultName>Class.cs</DefaultName>
 <AppendDefaultExtension>true</AppendDefaultExtension>

 34

 </TemplateData>

TemplateData Description

Element Required Default Attributes Description
TemplateData Yes Element containing the metadata

for the template
Name Yes Package – the VS

Package GUID
ID – the ID of the
string resource

Specifies the project name to
appear in the NPD2 as a string.

Description Yes Package – the VS
Package GUID
ID – the ID of the
string resource

Specifies the description to
appear in the NPD as a string.

Icon Yes Package – the VS
Package GUID
ID – the ID of the icon
resource

Specifies the icon to appear in
the NPD as a string.

ProjectType Yes The type of the template.
Possible values:

• CSharp
• VisualBasic
• JSharp
• VisualC
• General

ProjectSubType No The type of the template.
Possible values include:

• Windows
• Office
• Database
• Smart Devices
• Web

SortOrder Yes Template order in ANID. For MS
and VSIP authored templates
only. User templates have
mandatory alphabetical sort
order.

DefaultName Yes The DefaultName in the Name
file in the ANID, ex: Class

AppendDefaultExtension Yes True If set to true, will create the
target new file(s) with the same
extension as the source files,
ignoring what the user may have
typed in the Add New Item
dialog. (I.e. If user is creating
C# class file and types “Foo.vb”,
will be created as “Foo.cs”

LocationField No Enabled Whether the location field is
enabled, disabled or hidden.
Values (restricted):

• Enabled
• Disabled
• Hidden

SupportsMasterPage No Whether the template supports
having a master page (Web
option)

2 NPD – abbrev. for New Project Dialog

 35

SupportsCodeSeparation No Whether the template supports
code separation (Web option)

SupportsLanguageDropdown No Whether the template is identical
for multiple languages and a
language dropdown should
appear.

Hidden No False Specifies that the template
should not appear in the New
Project Dialog. If specified, no
other elements inside
<TemplateData> are required

DisplayInParentCategories No False Display the template in parent
categories (roll up display). Not
respected for user templates.

Hidden Templates

See above for notes on how to use the <Hidden> element.

TemplateContent
This element defines the content for the template. It consists of 1 subelement, the ProjectItem.

Simple Example:

 <TemplateContent>

<ProjectItem> Class1.cs</ProjectItem>
 </TemplateContent>

Advanced Example:

This example shows a template where references are being added, a Form file is being set to have a Form
subtype so that it will open properly in Form view in the Editor, and parameter replacement (replacing the
class name) is taking place.

 <TemplateContent>
 <References>
 <Reference>

<Assembly>System,Version=1.0.0.1,Culture=neutral,PublicKeyToken=9b35aa32c18d
 4fb1</Assembly>
 </Reference>
 <Reference>

<Assembly>System.Windows.Forms,Version=1.0.0.1,Culture=neutral,
PublicKeyToken

 =8c35aa32c18d4fb2</Assembly>
 </Reference>
 </References>

<ProjectItem ReplaceParameters=”true” SubType=”Form”> Form1.cs</ProjectItem>
 </TemplateContent>

TemplateContent Description

Element Required Default Attributes Description
TemplateContent Yes Contains all the items in the project.

References No Any references which should be added to a project

when the item is added

 36

Reference No The reference to be added. Includes:
• Assembly

Assembly No Required if reference element is specified. Assembly

element supports both simple text and strong name
assembly references:
<assembly>System</assembly>
<assembly>System,Version=1.0.0.1,
Culture=neutral,
PublicKeyToken=9b35aa32c18d4fb1</assembly>

ProjectItem Yes ReplaceParameters
SubType
TargetFileName

A project item.
SubType: Used for multi-file item templates when an
item has a SubType which sets how it should be
opened in the Editor. Specific to managed project
system-based templates. Sets the SubType for the
item in the Project file.
 <Compile Include="Form1.cs">
 <SubType>Form</SubType>
 </Compile>

CustomParameters No Name Any custom parameters which should be passed to
the wizard when it is run to do parameter
replacement.

CustomParameter No Name
Value

A custom parameter (name/value pair) to pass to the
wizard

Custom Parameters

Note that the customparameters section can be used to specify special custom parameters which you wish
to pass to the wizard. This can be used to define new parameter substitutions which are not pre-defined
below.

Example:

 <TemplateContent>
 …
 <CustomParameters>
 <CustomParameter Name=”$username$” Value=”CraigSkibo”/>
 </CustomParameters>
 </TemplateContent>

 37

Using User Input (Parameter Substitution)

All templates support parameter substitution to enable replacement of key parameters such as class
names, namespaces, etc on template instantiation. If the <ReplaceParameters> tag is true on any artifact
in a template, the template wizard will perform parameter substitution. The format for parameters is
$[parameter]$. Examples:

$safeprojectname$
$safeclassname$
$guid1$
$guid5$

The library of available parameter replacement options is the following. This library will be user-extensible
in future releases. Replacement parameters are case-sensitive.

Parameter Description
itemname The user-provided name of an item for an item template being added to a project. Used to

replace classnames in Class file templates Form file templates, etc, i.e. Public Class Class1
safeitemname The user-provided name of the item with all unsafe characters and spaces removed.
saferootitemname The name of the root item. Use for multi-file items when the root item name (the user-entered

name) should be used for all parameter replacements, e.g. for Form templates which contain
Form.cs and Form.desginer.cs.

guid [1-10] A guid. Used to replace the project GUID in a project file. User can specify up to 10 unique
GUIDs. Example: guid1

projectname The user-provided name of the project for a project template.
safeprojectname The user-provided name of the project for a project template with all unsafe characters and

spaces removed. Used to replace the namespace and the name of the main class in some
templates, i.e. NameSpace WindowsApplication1.

rootnamespace The root namespace of a project for an item template being added to a project. Used to replace
the namespace in the item file, i.e. Namespace WindowsApplication1

time The current time (Format: DD/MM/YYYY 00:00:00).

 38

Parameter Description
year The current year (Format: YYYY).
username The current username (Ex: CraigS).
userdomain The current user domain (Ex: REDMOND).
machinename The current machinename (Ex: VISUALSTUDIO1).

clrversion Current version of the CLR
registeredorganization The registry key value from: HKLM\Software\Microsoft\Windows

NT\CurrentVersion\RegisteredOrganization. Used for the company name field in
AssemblyInfo.vb.

wizarddata The XML payload, if any, of the <WizardData> element. This will be passed as a single string.

Note that the customparameters section for the VSTEMPLATE file can be used to specify special custom
parameters which you wish to pass to the wizard. This can be used to define new parameter substitutions
which are not pre-defined.

Example:

 <TemplateContent>
 …
 <CustomParameters>
 <CustomParameter Name=”$username$” Value=”CraigSkibo”/>
 </CustomParameters>
 </TemplateContent>

 39

	What to do for more information or help
	Getting Started
	When You Are Done
	Identity Descriptor
	TemplateData
	TemplateContent
	Identity Descriptor
	TemplateData
	TemplateContent

