

Hands-On Lab
Lab Manual
Developing Office Solutions with Microsoft
Visual Studio 2005 Tools for the Microsoft
Office System (Part 2)

Please do not remove this manual from the lab
The lab manual will be available from CommNet

2

Information in this document is subject to change without notice. The example companies,
organizations, products, people, and events depicted herein are fictitious. No association with any
real company, organization, product, person or event is intended or should be inferred. Complying
with all applicable copyright laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording,
or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarked, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any written
license agreement from Microsoft, the furnishing of this document does not give you any license to
these patents, trademarks, copyrights, or other intellectual property.

©2005 Microsoft Corporation. All rights reserved.

Microsoft, SQL Server, Visual Basic, Visual Studio, and Windows are either registered trademarks or
trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names herein may be the trademarks of their respective owners.

 3

Contents
SETTING UP THE LABS 4

LAB 1 - DATA AND CONTROLS IN AN EXCEL WORKBOOK 5
Exercise 1: Connect and Bind Data 5
Exercise 2: Use Windows Forms Controls 11

LAB 2 – USING CONTROLS IN THE ACTIONS PANE 14
Exercise 1: Add a Windows Forms Control to the Actions Pane 14
Exercise 2: Add a User Control to the Actions Pane 15

LAB 3 - DATA IN AN EXCEL WORKBOOK AND ACTIONS PANE 17
Exercise 1: Set Up a Connection and Add a Data Source 17
Exercise 2: Connect, Bind and Navigate Data 20

 4

Setting Up the Labs
To work through the lab exercises, you must install:

• Microsoft® Windows® 2000 or later

• Microsoft Visual Studio® 2005 Beta 2

• Microsoft Visual Studio 2005 Tools for the Microsoft Office System Beta 2 (included
with Visual Studio 2005 Beta 2)

• Microsoft Office Professional Edition 2003 with Microsoft Excel® Analysis ToolPak
add-in installed

• Microsoft SQL Server™ 2000 (or higher) or MSDE

Note When applicable, instructions in the lab manuals refer to files by a full path; it
is assumed that the download files are extracted to the root of C: drive. The files
needed to complete the labs are in a folder named C:\VSTO2005\Files\Excel.

Lab 1 - Data and Controls in an Excel
Workbook
The objective of this lab is to demonstrate how to connect to a SQL Server data source
for the purpose of binding controls in the Excel workbook to the data source. You will
also use Windows Forms controls on the workbook to navigate records in the data
source.

Estimated time to complete:

o Exercise 1: Connect and Bind Data – 15 minutes

o Exercise 2: Use Windows Forms Controls – 15 minutes

Exercise 1: Connect and Bind Data

Create a new Excel Workbook project

1. On the File menu, click New Project.

2. In the list of Project Types, expand Visual Basic and click Office.

3. Select Excel Workbook in the list of project Templates.

4. Type AssetAllocations in the project Name box. If you have a Location field, type
c:\VSTO2005\Labs. click OK. The Visual Studio Tools for Office Project Wizard
appears.

5. In the wizard, click Copy an existing document.

6. Click the Browse button to navigate to C:\VSTO2005\Files\Excel\Asset
Allocations.xls for the file path.

7. Click Finish. If this is your first Visual Studio Tools for Office 2005 project for
Microsoft Excel, you may see the dialog box shown in Figure 1. If you do, click OK
to acknowledge and close the dialog box.

Figure 1. You receive a security notice the first time
you create a Visual Studio Tools for Office project for Excel.

8. On the File menu, select Save All.

9. If you didn’t have a Location field on step 4, the Save Project dialog box appears. n
the project Location box, type C:\VSTO2005\Labs and click Save.

 5

Create the sample database using a SQL script

This lab uses a SQL Server database included in the lab files. You will use a SQL script to
add the sample database to your instance of SQL Server. The name of the new database
is VSTO2Lab.

1. On the Windows Start menu, select Run. Type cmd and click OK. A Command
window opens.

2. Change to the folder where the lab files reside:

cd C:\VSTO2005\Files\Excel

3. Execute the batch procedure:

osql.exe –n -E -i VSTO2005ExcelLab.sql

You will receive a message that the database is successfully restored.

4. Close the Command window.

Add a data source to your project

1. On the Data menu, select Show Data Sources. The Data Source window appears.

2. Click Add New Data Source in the Data Source window. You see the Data Source
Configuration window.

3. Select Database for the data source type and click Next.

4. Click New Connection. If you have not created a data connection before, the
Choose Data Source dialog box appears. If you have created a data connection,
you see the Add Connection dialog box shown in Figure 3 instead and you can skip
to step 7.

5. In the Choose Data Source dialog box, select Microsoft SQL Server, as shown in
Figure 2.

Figure 2. The Microsoft SQL Server data source
is used for Microsoft SQL Server 7.0 and up.

 6

6. Click Continue. You see the Add Connection dialog box shown in Figure 3.

Figure 3. The Add Connection dialog box prompts
you for information about the new connection.

7. Create the new connection:

• If the Data Source is not Microsoft SQL Server (SqlClient), click Change and
choose the SQL Server data source.

• In Server Name, type (local).

• Select Use Windows Authentication for the authentication mode.

• In the Connect to a database section, select VSTO2005Lab in the Select or
enter a database name list.

• Click Test Connection to confirm that the connection is valid and then click OK
to add the new connection. The new connection has the default name
[YourServerName].VSTO2005Lab.dbo.

8. Click Next.

 7

9. Save the connection using the default name, VSTO2005LabConnectionString.

10. Click Next.

11. In the list of database objects, select the Tables and Views check boxes and click
Finish.

Add a relation to the data source

1. Right-click VSTOLab2005DataSet in the Data Sources window and select Edit
DataSet with Designer on the context menu.

2. On the Data menu, select Add and choose Relation. The Relation dialog box
appears.

3. Specify the following for the new relation:

• Name is Customers_PortfolioView

• Parent Table is Customers

• Child Table is PortfolioView

• PK Fields is CustomerID

• FK Fields is CustomerID

The completed dialog box looks like Figure 4.

Figure 4. The default selections should
match the choices you need for this exercise.

4. And click OK to add the new relation.

 8

5. The Data Source window now looks like Figure 5.

Figure 5. You can see the relation you just created
as a line between Customers and PortfolioView.

Bind NamedRange controls to fields in the data source

1. In Solution Explorer, right-click Sheet1.vb and select View Designer on the
context menu.

2. In the Data Sources window, expand the Customers table.

3. Click CustomerID under the Customers table and drag it onto cell B2 of Sheet1.

4. Click FirstName under the Customers table and drag it onto cell E2 of Sheet1.

5. Click LastName under the Customers table and drag it onto cell E3 of Sheet1.

6. Click BirthDate under the Customers table. Click the drop-down arrow to the right
of the BirthDate field and select NamedRange from the list. Then, click BirthDate
and drag it onto cell E4 of Sheet1.

 9

Complex-bind a List control to fields in the data source

1. In the Data Sources window, click to select PortfolioView and drag it onto cell A7
of Sheet1. A new list named PortfolioViewListObject is created. It contains one
column for each field in PortfolioView. Leave PortfolioViewListObject selected.

2. On the Data menu, click Microsoft Office Excel Data, click Filter and select
AutoFilter to remove the AutoFilter drop-down lists from the list object.

3. In the Properties window, click the drop-down arrow next to the DataSource
property. Expand CustomersBindingSource in the list and select
Customers_PortfolioView.

4. The Asset Allocations workbook will use named ranges in the List for calculations.
Name the Sheet1 range B7:B8 Symbol by following these steps:

• Select the range B7:B8.

• In the Name Box shown in Figure 6, type Symbol and press Enter.

Figure 6. Use the Name Box to name a range.

5. Repeat the steps to name the ranges described in Table 1.

Name Range

Symbol Sheet1!B7:B8

Class Sheet1!D7:D8

LastPrice Sheet1!G7:G8

Shares Sheet1!H7:H8

Amount Sheet1!I7:I8

Table 1. Named ranges needed for the Asset Allocation workbook.

 10

Checkpoint

1. On the File menu, select Save All.

2. On the Debug menu, select Start to build and run the project. The workbook Asset
Allocations.xls opens in Excel as shown in Figure 7.

Figure 7. Ranges in the workbook are now bound
to data in the SQL Server tables.

The data for the first record in the Customers table is displayed in the bound
NamedRange controls; additionally, the corresponding details from the
PortfolioView view appear in the List control.

3. Exit Excel without saving the workbook.

Exercise 2: Use Windows Forms Controls

Add Windows Forms controls to the workbook for navigating the data source

1. If the Toolbox window is not visible, then select the View menu and choose
Toolbox.

2. Select a Button control from the Toolbox window and drag it to cell A4 of Sheet1.
Button1 is added to the worksheet.

3. Select another Button control from the Toolbox window and drag it to cell B4 of
Sheet1. Button2 is added to the worksheet.

4. Use the Properties window to change the properties of the buttons as shown in
Table 2.

Control Property Value

Button1 (Name) btnPrevious

 Text <<

 TextAlign MiddleCenter

 11

 12

Control Property Value

Button2 (Name) btnNext

 Text >>

 TextAlign MiddleCenter

Table 2. Property settings for button controls.

5. In Solution Explorer, right-click Sheet1.vb and select View Code on the context
menu.

6. Observe that the designer has automatically created a class named Sheet1 for the
worksheet. Additionally, note that there are two lines of code already in the Startup
event for Sheet1; the designer added this code when you bound the NamedRange
and List controls to fields in the data source:

 Private Sub Sheet1_Startup(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Startup

 'TODO: Delete this line of code to remove the default AutoFill

 'for 'VSTO2005LabDataSet.PortfolioView'.

 If Me.NeedsFill("VSTO2005LabDataSet") Then

 Me.PortfolioViewTableAdapter.Fill(_

 Me.VSTO2005LabDataSet.PortfolioView)

 End If

 'TODO: Delete this line of code to remove the default AutoFill

 'for 'VSTO2005LabDataSet.Customers'.

 If Me.NeedsFill("VSTO2005LabDataSet") Then

 Me.CustomersTableAdapter.Fill(Me.VSTO2005LabDataSet.Customers)

 End If

 End Sub

7. In the Class Name list, select btnPrevious.

8. In the Method Name list, select Click.

9. Add code to the Click events of Button1 to navigate the data source:

Private Sub btnPrevious_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles btnPrevious.Click

 'Move to the previous record if not already at the beginning of the list

 If Me.CustomersBindingSource.Position > 0 Then

 Me.CustomersBindingSource.MovePrevious()

 Else

 MessageBox.Show("The current record is at the beginning of the list.", _

 "Asset Allocation", MessageBoxButtons.OK, MessageBoxIcon.Information)

 End If

End Sub

 13

10. Follow the same process to add code to the Click event of btnNext:

Private Sub btnNext_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles btnNext.Click

 'Move to the next record if not already at the end of the list.

 If Me.CustomersBindingSource.Position < _

 Me.CustomersBindingSource.Count - 1 Then

 Me.CustomersBindingSource.MoveNext()

 Else

 MessageBox.Show("The current record is at the end of the list.", _

 "Asset Allocation", MessageBoxButtons.OK, MessageBoxIcon.Information)

 End If

End Sub

Checkpoint

1. On the File menu, select Save All.

2. On the Debug menu, select Start to build and run the project. The Asset Allocations
workbook opens in Excel.

3. Click the buttons to move between the records in the data source. Notice that the
details in the List object update when the bound fields for the parent table
(Customers) change.

4. Exit Excel without saving changes.

 14

Lab 2 – Using Controls in the Actions Pane
In this lab, you will create an actions pane for an Excel solution using a Windows Forms
control and a user control that you will create.

Estimated time to complete:

o Exercise 1: Add a Windows Forms Control to the Actions Pane - 5 minutes

o Exercise 2: Add a User Control to the Actions Pane – 5 minutes

Exercise 1: Add a Windows Forms Control to the Actions
Pane

Create a new Excel Workbook project

1. On the File menu, select New Project.

2. In the list of Project Types, expand Visual Basic and choose Office.

3. Select Excel Workbook in the list of project Templates.

4. Type DebtConsolidation in the project Name box, and C:\VSTO2005\Labs on the
location box (if you have it) and click OK. The Visual Studio Tools for Office
Project wizard appears.

5. In the wizard, click Copy an existing document.

6. Type C:\VSTO2005\Files\Excel\Debt Consolidation.xls for the file path and
click Finish.

7. On the File menu, click Save All.

8. If you didn’t get a location field on step 4, A save dialog will appear, In the project
Location box, type C:\VSTO2005\Labs and click Save.

Set the size and position for the actions pane

1. In Solution Explorer, right-click ThisWorkbook.vb and select View Code. The
code module for the workbook appears; observe that the workbook code-behind is
encapsulated in a class named ThisWorkbook and that event handlers for Startup
and ShutDown already exist.

2. Add code to the ThisWorkbook_Startup event that will size and position the
actions pane when the workbook loads and initialize the worksheet view:

Private Sub ThisWorkbook_Startup(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Initialize

 With Me.Application.CommandBars("Task Pane")

 .Width = 300

 .Position = Microsoft.Office.Core.MsoBarPosition.msoBarLeft

 End With

 Dim labelControl As New Label

 labelControl.Text = "TO DO: Add Controls Here"

 15

 Me.ActionsPane.Controls.Add(labelControl)

 Globals.Sheet2.Select()

 Me.Application.ActiveWindow.DisplayHeadings = False

End Sub

Checkpoint

1. On the File menu, select Save All.

2. On the Debug menu, select Start to build and run the project. The workbook Debt
Consolidation.xls opens in Excel.

3. The actions pane is displayed with a label, as shown in Figure 8.

4. Close the workbook without saving changes and quit Excel.

Figure 8. The code adds a label to the actions pane.

Exercise 2: Add a User Control to the Actions Pane

Create a user control

1. In Solution Explorer, right-click the DebtConsolidation project, select Add on the
context menu, and then click New Item. The Add New Item dialog box appears.

2. Select the User Control template.

3. Type CustomerProfile in the Name box and click Add.

 16

4. Set properties for the CustomerProfile user control using Table 3.

Property Value

BackColor InactiveCaptionText

ForeColor Desktop

Size 300,600

Table 3. Profile settings for the CustomerProfile user control.

Add the user control to the Excel actions pane

1. In Solution Explorer, right-click Thisworkbook.vb and select View Code on the
context menu.

2. Add a new member variable for an instance of a CustomerProfile control to the
ThisWorkbook class:

Friend WithEvents profileControl As CustomerProfile

3. Append the following code to ThisWorkbook_Startup to add an instance of the
CustomerProfile control to the actions pane:

profileControl = New CustomerProfile

Me.ActionsPane.Controls.Add(profileControl)

Checkpoint

1. On the File menu, select Save All.

2. On the Debug menu, select Start to build and run the project. The workbook Debt
Consolidation opens in Excel.

3. The actions pane now contains two controls, a Label control and a CustomerProfile
user control.

Note You will add controls to the CustomerProfile component in another lab. For
now, you will only see the user control surface in the actions pane.

4. Close the workbook without saving changes and exit Excel.

 17

Lab 3 - Data in an Excel Workbook and
Actions Pane
In this lab, you will connect to a SQL Server data source, bind controls in both the
workbook and actions pane to database objects, and navigate records in the data
source.

Estimated time to complete:

o Exercise 1: Set Up a Connection and Add a Data Source – 10 minutes

o Exercise 2: Connect, Bind and Navigate Data – 40 minutes

This lab uses the DebtConsolidation project you created in Lab 3.

Exercise 1: Set Up a Connection and Add a Data Source

Create the sample database using a SQL script

1. On the Windows Start menu, click Run. Type cmd and click OK. A Command
window opens.

2. Change to the folder where the lab files reside:

cd C:\VSTO2005\Files\Excel

3. Execute the batch procedure:

osql.exe –n -E -i DebtConsolidation.sql

You will receive a message that the database is successfully restored.

4. Close the Command window.

Add a data source to your project

1. On the Data menu, click Show Data Sources. The Data Source window appears.

1. Click Add New Data Source in the Data Source window. The Data Source
Configuration window appears.

2. Select Database for the data source type and click Next.

3. Click New Connection. If you have not created a data connection before, the
Choose Data Source dialog box appears. If you have created a data connection,
you see the Add Connection dialog box shown in Figure 10 instead.

4. In the Choose Data Source dialog box, select Microsoft SQL Server, as shown in
Figure 9.

Figure 9. The Microsoft SQL Server data source is used for Microsoft SQL Server
7.0 and up.

5. Click Continue. You see the Add Connection dialog box shown in Figure 10.

 18

Figure 10. The Add Connection dialog box prompts
you for information about the new connection.

6. Create the new connection:

• If the Data Source is not Microsoft SQL Server (SqlClient), click Change and
choose the SQL Server data source.

• In Server Name, type (local).

• Select Use Windows Authentication for the authentication mode.

• In the Connect to a database section, select VSTO2005DebtConsolidation in
the Select or enter a database name list.

• Click Test Connection to confirm that the connection is valid and then click OK
to add the new connection. The new connection has the default name
[YourServerName].VSTO2005DebtConsolidation.dbo.

7. Click Next.

8. Save the connection using the default name,
VSTO2005DebtConsolidationConnectionString.

9. Click Next.

 19

10. In the list of database objects, select the Tables check box and click Finish.

Add a relation to the data source

Right-click VSTO2005DebtConsolidationDataSet in the Data Sources window and
then select Edit DataSet with Designer on the context menu. Note that a relation

already exists between the NewCustomers and LoanData tables, as shown in Figure 11.

Right Click on the relation and select “edit relation” then if the relation name is not
FK_LoanData_NewCustomers, change it so that it is, but just the name, not the relation
itself. (the primary key is still in NewCustomers)

1. below.

Figure 11. A relation has already been
created between LoanData and NewCustomers.

Right Click on the relation and select “edit relation” then if the relation name is not
FK_LoanData_NewCustomers, change it so that it is, but just the name, not the relation
itself. (the primary key is still in NewCustomers)

Exercise 2: Connect, Bind and Navigate Data

Select controls to use for binding NewCustomers fields

1. In Solution Explorer, right-click CustomerProfile.vb and select View Designer
on the context menu.

2. On the Data menu, select Show Data Sources to display the Data Sources
window.

3. Select NewCustomers in the Data Sources window.

4. Click the drop-down arrow next to NewCustomers and select Details.

5. Expand NewCustomers.

 20

 21

6. Select the ProposedRate field.

7. Click the drop-down arrow next to ProposedRate and select Customize. The
Options dialog box appears.

8. Select NumericUpDown in the Associated Controls list (if it is not already
selected) and click OK.

9. Once again select the ProposedRate field.

10. Click the drop-down arrow next to ProposedRate and select NumericUpDown.

11. Click to select the MinimumRate field.

12. Click the drop-down arrow next to MinimumRate and select None.

Add controls bound to the data source to the CustomerProfile component

1. Drag NewCustomers from the Data Sources window and drop it at the upper left
corner of the user control design surface.

Observe that the designer automatically generates bound TextBox controls and a
NumericUpdown control for the selected fields in the NewCustomers table. The
designer also adds a DataNavigator control for navigating the records in the data
source at run-time.

2. In the Data Source window, select the LoanData node of NewCustomers and use
the mouse to drag it to the user control. Drop it under the NewCustomer fields.

Adjust the data grid display properties

1. Right-click the LoanDataDataGridView control and choose Edit Columns.

2. Remove NewCustomerID, LoanNumber, LoanAmount, and LoanRate from the
list of selected controls by clicking the Remove button.

3. Select LoanName in the list of selected columns. Set the Width property to 150
and the Readonly property to True.

4. Select Include in the list of selected columns and click the move up button. Set the
Width property to 50 and the Readonly property to True.

5. Click OK to close the Edit Columns dialog box.

Note At this point, Include and LoanName should be the only two columns in
LoanDataDataGridView.

6. Set the properties for LoanDataDataGridView as shown in Table 4.

Property Value

AllowUsersToAddRows False

AllowUsersToDeleteRows False

Location 15, 200

RowHeadersVisible False

Size 200,175

Table 4. Property settings for the data grid.

 22

Set properties and additional data bindings to the NumericUpDown control

1. Select the ProposedRateNumericUpDown control.

2. Set the DecimalPlaces property to 1, the Increment property to 0.5 and the
Maximum property to 24.

3. Expand the (DataBindings) property and click the ellipses (...) next to
(Advanced). The Formatting and Advanced Binding dialog box appears.

4. Select Minimum in the Property List. Click the drop-down arrow for the Binding
list. In the list, expand NewCustomersBindingSource and select MinimumRate.

5. Click OK to close the Formatting and Advanced Binding dialog box.

6. Select NewCustomersBindingNavigator in the component tray.

7. In the Properties window, expand the BindingSource properties and set the
AllowNew property to False.

Fill the table adapters when the component loads

1. On the View menu, select Code.

2. Select (CustomerProfile Events) from the Class Name list.

3. Select Load from the Method Name list.

4. Add code to fill the table adapters:

Private Sub CustomerProfile_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load

 Me.LoanDataTableAdapter.Fill(_

 Me.VSTO2005DebtConsolidationDataSet.LoanData)

 Me.NewCustomersTableAdapter.Fill(_

 Me.VSTO2005DebtConsolidationDataSet.NewCustomers)

End Sub

Toggle the Include field when a DataGridView row is clicked

1. Select LoanDataDataGridView from the Class Name list and CellContentClick
from the Method Name list.

2. Add code to toggle the Include field when the row is clicked:

Private Sub LoanDataDataGridView_CellContentClick(_

 ByVal sender As Object, ByVal e As _

 System.Windows.Forms.DataGridViewCellEventArgs) _

 Handles LoanDataDataGridView.CellContentClick

 Try

 Dim r As Integer = Me.LoanDataDataGridView.CurrentCell.RowIndex

 Dim rv As DataRowView = DirectCast(_

 Me.LoanDataDataGridView.Rows(r).DataBoundItem, DataRowView)

 rv("Include") = Not (rv("Include"))

 rv.EndEdit()

 Catch ex As Exception

 23

 MessageBox.Show(ex.Message)

 End Try

End Sub

Eliminate placeholder label from the actions pane

1. In the Solution Explorer window, right-click ThisWorkbook.vb and select View
Code.

2. In the ThisWorkbook_Startup procedure, select the three lines used to define and
place the label on the actions pane and click the Comment out the selected lines
toolbar button:

 'Dim labelControl As New Label

 'labelControl.Text = "TO DO: Add Controls Here"

 'Me.ActionsPane.Controls.Add(labelControl)

Checkpoint

1. On the File menu, click Save All.

2. On the Debug menu, click Start to build and run the project. The workbook Debt
Consolidation opens in Excel.

3. The records from the data source appear in the actions pane as illustrated in Figure
15.

Figure 12. The actions pane now contains bound data.

 24

The first record that displays is for the customer Nancy Davolio.

4. Click one or more rows in the DataGridView control to check/uncheck the rows.

5. Change the ProposedRate.

6. Click Move next on the DataNavigator control to move to the next record. The
next record that displays corresponds to the customer Andrew Fuller.

7. Click Move previous on the DataNavigator control to move to the previous record.
The data for the customer Nancy Davolio appears. Notice that your changes to the
bound DataGridView and NumericUpDown controls are restored (in other words,
your changes were persisted in the in-memory dataset).

8. Close the workbook without saving changes and exit Excel.

Update a named range based on changes in the actions pane

1. In Solution Explorer, right-click CustomerProfile.vb and select View Code on
the context menu.

2. Add code to the CustomerProfile class that will raise an event named
RateChanged when the value in the bound NumericUpDown control changes:

Public Event RateChanged(ByVal NewRate As Double)

Private Sub ProposedRateNumericUpDown_ValueChanged(_

 ByVal sender As Object, ByVal e As System.EventArgs) _

 Handles ProposedRateNumericUpDown.ValueChanged

 RaiseEvent RateChanged(ProposedRateNumericUpDown.Value * 0.01)

End Sub

3. In Solution Explorer, right-click Thisworkbook.vb and select View Code on the
context menu.

4. Add an event handler for the CustomerProfile control’s RateChanged event to add
the new rate to the worksheet in the named range InterestRate:

Private Sub CustomerProfile_RateChanged(ByVal NewRate As Double) _

 Handles profileControl.RateChanged

 Globals.Sheet2.InterestRate.Value2 = NewRate

End Sub

Bind an Excel List object to the data source

1. In Solution Explorer, right-click CustomerProfile.vb and select View Code on
the context menu.

 25

2. Add a new read-only property named Connector that will return the BindingSource
that the CustomerProfile control is using for the current data source:

Public ReadOnly Property Connector() As BindingSource

 Get

 Return Me.NewCustomersBindingSource

 End Get

End Property

3. In Solution Explorer, right-click Sheet2.vb and select View Designer on the
context menu.

4. On the Data menu, click Microsoft Office Excel Data, select List and then select
Create List. You see the Create List dialog box.

5. Type =A12:G13 for the range, select My list has headers and click OK.

6. On the Data menu, click Microsoft Office Excel Data, select Filter and then select
AutoFilter to remove the Filter controls from the list.

7. On the Data menu, click Microsoft Office Excel Data, select List and then select
Hide Border of Inactive Lists.

8. In Solution Explorer, right-click ThisWorkbook.vb and click View Code.

9. Append the following code to ThisWorkbook_Startup:

With Globals.Sheet2.List1

 .AutoSetDataBoundColumnHeaders = False

 .SetDataBinding(profileControl.Connector, "FK_LoanData_NewCustomers")

End With

 This will bind the List object on the CallSheet worksheet to the same BindingSource
in use by the CustomerProfile control in the actions pane.

Checkpoint

1. On the File menu, click Save All.

2. On the Debug menu, click Start to build and run the project. The workbook Debt
Consolidation opens in Excel.

3. Notice that the data in the task pane now appears in the CallSheet worksheet as
shown in Figure 13.

4. Change the ProposedRate and observe that your changes are reflected in the
InterestRate named range on the worksheet.

5. Check and/or uncheck Include columns in the DataGridView and observe that your
changes are reflected in the List control on the worksheet.

6. Close the workbook without saving changes and quit Excel.

Figure 13. The data now appears in the worksheet and the actions pane.

 26

	Setting Up the Labs
	Lab 1 - Data and Controls in an Excel Workbook
	Exercise 1: Connect and Bind Data
	Create a new Excel Workbook project
	Create the sample database using a SQL script
	Add a data source to your project
	Add a relation to the data source
	Bind NamedRange controls to fields in the data source
	Complex-bind a List control to fields in the data source
	Checkpoint

	Exercise 2: Use Windows Forms Controls
	Add Windows Forms controls to the workbook for navigating th
	Checkpoint

	Lab 2 – Using Controls in the Actions Pane
	Exercise 1: Add a Windows Forms Control to the Actions Pane
	Create a new Excel Workbook project
	Set the size and position for the actions pane
	Checkpoint
	Exercise 2: Add a User Control to the Actions Pane
	Create a user control
	Add the user control to the Excel actions pane
	Checkpoint

	Lab 3 - Data in an Excel Workbook and Actions Pane
	Exercise 1: Set Up a Connection and Add a Data Source
	Create the sample database using a SQL script
	Add a data source to your project
	Add a relation to the data source
	Exercise 2: Connect, Bind and Navigate Data
	Select controls to use for binding NewCustomers fields
	Add controls bound to the data source to the CustomerProfile
	Adjust the data grid display properties
	Set properties and additional data bindings to the NumericUp
	Fill the table adapters when the component loads
	Toggle the Include field when a DataGridView row is clicked
	Eliminate placeholder label from the actions pane
	Checkpoint
	Update a named range based on changes in the actions pane
	Bind an Excel List object to the data source
	Checkpoint

