

Hands-On Lab

Lab Manual

HOL057 –
Data Features in Windows Forms 2.0

Please do not remove this manual from the lab
The lab manual will be available from CommNet

Page i

Information in this document is subject to change without notice. The example companies, organizations,
products, people, and events depicted herein are fictitious. No association with any real company, organization,
product, person or event is intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced,
stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft
Corporation.

Microsoft may have patents, patent applications, trademarked, copyrights, or other intellectual property rights
covering subject matter in this document. Except as expressly provided in any written license agreement from
Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights,
or other intellectual property.

©2005 Microsoft Corporation. All rights reserved.

Microsoft, Visual Basic, Visual Studio, and Windows are either registered trademarks or trademarks of Microsoft
Corporation in the U.S.A. and/or other countries.

Other product and company names herein may be the trademarks of their respective owners.

Page ii

Contents

LAB 1: DATA FEATURES IN WINDOWS FORMS 2.0...1
Lab Objective ...1
Exercise 1 –Create a datasource and add it to DataSources Window ..1

Task 1 – Create Windows Application ...1
Task 2 – Add a DataSource to your project...2
Task 3 – Explore the recently added datasource ..5

Exercise 2 – Databinding a Datasource to a form ...8
Task 1 – Create a Master/Details View ...8
Task 2 – Customize the Detail controls to readonly types...11

Exercise 3 – Customizing a DataGridView ..12
Task 1 – Adding UnBound columns to the view ..12
Task 2 – Customizing Cell formats ..13
Task 3 – Populating the Unbound columns...13
Task 4 – Handling CellPainting to highlight cells ...14
Task 5 – Removing unneeded columns & freezing columns..15
Task 6 – Preview all the changes ..15

Exercise 4– Binding to business objects..16
Task 1 – Open startup project..16
Task 2– Create a business object datasource...17
Task 3 - Create Master/Details from using business object datasource ...18
Task 4 – Update business object...20

Lab Summary ...22

Page 1

Lab 1: Data Features in Windows Forms 2.0

Lab Objective

80 minutes
The objective of this lab is to introduce a few of the new Microsoft® Windows® Forms data features in Microsoft
Visual Studio® 2005.
The goal for these new features is to increase developer productivity and simplify data binding to business
objects.

This lab will also introduce the new Windows Forms DataGridView control, a flexible, scalable and easier to use
alternative to the DataGrid control.

You will complete the following exercises in this lab:

• Addng DataSources to the Datasources Window

• Binding a DataSource to a form

• Customizing DataGridViews

• Binding to Business Objects

Exercise 1 –Create a datasource and add it to DataSources Window

In this exercise, you will create a datasource that connects to a SQL Server database.

Task 1 – Create Windows Application
• Navigate to Start | Programs | Microsoft Visual Studio Beta2 | Microsoft Visual Studio Beta2

• Select File | New | Project menu command

• Select C# or Visual Basic Windows Application
o Name = ‘DataLab’

o Location = ‘C:\labs\hol057’

• Click OK to create the project

Task 2 – Add a DataSource to your project
• Select Data | Add New DataSource menu command

• Data Source Configuration Wizard appears (see Figure 1.1)

Figure 1.1. DataSource Configuration Wizard

Note: The data source configuration wizard supports three different types of data sources:

o Web Services,

o Database (any data that a .NET Data Provider) can attach to

o Business objects

• Select Database to connect to a database

• Click Next

• Click New Connection button

Page 2

• [Optional step, might show depending on machine’s last configurationlocal]

o The Choose Data Source dialog appears

o Select “Microsoft SQL Server” in the DataSource window

o Click Continue

• The “Add Connection” dialog appears (see Figure 1.2)

Figure 1.2 Add Connection dialog for configuring SQL Server connections

• Enter “localhost\SQLExpress” as Server name

• Leave the “Use Windows Authentication” as the option to Log on to the server

• Locate (or type) “Northwind” in the Select or enter a database name dropdown

• Click OK to close the dialog and go back to DataSource Configuration Wizard

Page 3

• Click Next

• Leave the “Yes, save the connection as..” unchanged

• Click Next
Note: The designer might take a second or two to perform this operation.

• The “Choose your data objects” dialog displays (see Figure 1.3)

Figure 1.3 Database object selection dialog

Page 4

• Click the following objects:

o Tables | Orders
o Tables | Order details
o Tables | Customers

• Click Finish

Note: The designer might take a second or two to perform this operation.

Task 3 – Explore the recently added datasource

• Select Data | Show Data Sources menu command

• The data sources window should appear (as in Fig 1.4)

Figure 1.4 DataSources Window

Page 5

• Notice that your tables selected have been wrapped into a single, strong typed DataSet

• Right Click in “NorthWindDataSet” at the very top, select Edit DataSet with designer

• The new DataSet designer appears (see Figure 1.5)

Figure 1.5 DataSet Designer

• Notice how the designer imported the relationships that existed in the database. In the DataSet
designer you can get rid of these, or even add new relationships or Foreign Key constraints.

• Double click on the relationship from OrderDetails to Order

Page 6

• A Relation dialog appears (see Figure 1.6)

Figure 1.6 Relation Dialog in the DataSet designer

• Notice the designer has options to specify:

o Parent/Child relations

o Foreign key constraints

o Custom rules for accepting/rejecting the constraints, etc.

• Click Cancel to discard any changes you made in the Relation Dialog (and close it)

Note: With the new DataSet designer you have a lot of “design-time flexibility”; you do not have to
write any code to represent complex relationships.

• Close the DataSet designer

• Go back to DataSource window

• Click on the drop-down arrow for the Orders table(see Figure 1.7)

Page 7

• Select “Details” in the popup menu (see Figure 1.7)

Figure 1.7 DataSource Window customization for details view

Because you selected “Details view” when you drag this table into a Windows Form, it will create a
details view, by creating a control for every column in the table (refer to Task 3 in Exercise 2 in this
same lab).

You can customize the type of the control created (for each column).

Exercise 2 – Databinding a Datasource to a form

Task 1 – Create a Master/Details View

• Drag the Orders table from the DataSources Window to Form1 in the Windows forms designer

Note: When dragging the table, a lot of work is done by the designer:

o An instance of the NorthwindDataSet is created, so it can fetch the data

o An OrdersBindingSource is created. A bindingsource acts as a generic proxy to a
datasource.

o An OrdersBindingNavigator is also associated with the bind. The binding navigator is a
Toolstrip control you can use to get VCR-like navigation of your data.

o A lot of labels and textbox controls are added to the form – one for each column in the
Orders table. The reason controls were added instead of a datagridview is because we
selected “Details” in the previous exercise.

Page 8

o See Figure 1.8 for what the form should look like.

Figure 1.8 – Form after dragging Orders table from DS Window

• In the DataSources window, click the Orders node to expand it.

• Locate the Order Details node located inside the Orders table (represented as part of the table
due to the parent/child between Orders and order details)

• Drag the Order Details table located inside the Orders table to the bottom of Form1

Note: Because you did not select “Details” for Order Details, this time a dataGridView is created. Your
form should look like Figure 1.9

Page 9

• Set the Dock Property of the order_DetailsDataGridView to Bottom

Figure 1.9 – Form1, after dragging two tables from Datasources window (no code written)

• Select Debug | Start Debugging menu command

• Form1 appears. Notice that:

o When you change the position (or selected record) in the Orders this automatically updates
the order details datagridview. Use the Binding Navigator to change positions in the orders
table.

o The BindingNavigator has the “new” , “delete” , “goto last” , “go to first”, etc. all of these
buttons have been wired and have the functionality needed.

Note: We have accomplished a master/details view with navigation and performant strong-typed
databinding without writing a single line of code.

• Close the application or stop debugging

Page 10

Task 2 – Customize the Detail controls to readonly types
In the previous task, we dragged the Details View and it defaulted to TextBox controls for all the
columns. Let’s now customize this.

• In DataSources window, Click on the dropdown arrow next to OrderId, in the Orders table (see

Figure 1.9)

Figure 1.9 – Customizing the control type for details view

• Select Label in the context menu as the type for OrderId

• Delete orderIdLabel and orderIdTextBox from Form1

• From the datasources window, drag & drop OrderId from the Orders Table into Form1; positioning
so it aligns with the other details controls (and replacing the two controls you just deleted).

• Select Debug | Start Debugging and preview the changes

• DataLab application launches

o Notice how orderId is now a label instead of a textbox; you can use the same procedure to
customize the other columns.

• Close the application (or select Debug | Stop Debugging menu command)

Page 11

Exercise 3 – Customizing a DataGridView

Task 1 – Adding UnBound columns to the view
• RightClick on order_DetailsDataGridView

• Select Add Column from the popup menu

• The Add Column Dialog appears (see Figure 1.10)

Figure 1.10 Add Column dialog

• Click Unbound Column

Note: Unbound columns are columns not bound to data. Their values are provided dynamically via
eventing in the Gridview.

• Enter “SubTotal” for Name

• Select DataGridViewTextBoxColumn for Type

• Enter “SubTotal” for Header Text

• Check Visible

• Check Read Only

• Click Add to save to add this column

• Click Close to dismiss the Add Column Dialog

• Click OK to close the Edit Columns dialog

Page 12

Page 13

• Select the order_detailsDataGridView, set the following properties:

o VirtualMode = True

Note: VirtualMode has to be True when using Unbound columns. If you do not set Virtual Mode = true,
the CellValueNeeded (below) will not be called.

Task 2 – Customizing Cell formats
• RightClick on order_DetailsDataGridView

• Select Edit Columns from the popup menu

• The Edit Columns dialog appears

• Select UnitPrice to edit its properties

o Locate the DefaultCellStyle property

o Double Click DefaultCellStyle

o CellStyle builder dialog appears

 Set Format = “C2”

 Click OK to close CellStyle builder dialog

Note: C2 Format will format the contents of this cell as Currency.

• Click OK to close the Edit Columns dialog

Task 3 – Populating the Unbound columns
• Click on the Events icon in the properties for order_DetailsDataGridView

• Locate CellValueNeeded event

Note: CellValueNeeded will be call once per each Unbound cell that needs a value. Inside this event,
we can set the value that needs to be displayed.

In this case SubTotal = UnitPrice * Quantity

• Double-Click on CellValueNeeded to add a handler

Page 14

• Add the following code:

// C#
DataGridView grid = sender as DataGridView;
try
{
// There are more efficient ways to do this.. coded this way for demo simplicity

decimal subtotal =
 (decimal)grid["UnitPrice", e.RowIndex].Value *
 (short)grid["Quantity", e.RowIndex].Value ;
 e.Value = subtotal.ToString(“C2”);
} finally { }

‘VB:
Dim grid As DataGridView = CType(sender, DataGridView)
 Try
'There are more efficient ways to do this.. coded this way for demo simplicity
 Dim subTotal As Decimal = _
 CType(grid("UnitPrice", e.RowIndex).Value, Decimal) * _
 CType(grid("Quantity", e.RowIndex).Value, Integer)
 e.Value = subTotal.ToString("C2")
 Finally

 End Try

Task 4 – Handling CellPainting to highlight cells
Note: CellPainting is called before the cell will be painted; handle this event to highlight any order
details with discounts greater than 10%

• Click on the Events icon in the properties for order_DetailsDataGridView

• Locate CellPainting event

• Double-Click on CellPainting to add a handler

• Add the following code in the handler:

// C#
DataGridView grid = (DataGridView)sender;
 // Make sure it is the Discount column & it is not the header
 if (grid.Columns["Discount"].Index == e.ColumnIndex
 && e.Value != null
 && e.RowIndex != -1)
 {
 float discount = (float) e.Value;
 if (0.100f < discount)
 {
 e.CellStyle.BackColor = Color.Red;
 }
 }

‘VB:

Page 15

Task 5 – Removing unneeded columns & freezing columns
• Right-Click on order_detailsDataGridView

• Select Edit Columns

• Select the OrderId column in the selected columns List

• Click Remove

Note: Since you are viewing the details for an order, this column is already showing on the top of our
form.

• Select ProductId in the selected columns List, set the following properties:

o Frozen = True

o AutoSizeMode = DisplayedCells

Note: The frozen property is used to make sure this column always shows. When the grid is shrinked,
all the other columns will be resized first, and this frozen column will be kept constant so it always
shows.

The AutoSizeMode is set to Displayed Cells so the grid calculates the column width based on what is
showing. Displayed cells are all the cells in the screen, including the header

• Click OK to close the Edit Columns Dialog

Task 6 – Preview all the changes
• Select Debug | Start Debugging menu command

• DataLab application launches

• Notice the UnitPrice and SubTotal columns are formatted as currency. The formatting for UnitPrice
was set in the designer (no coding needed); the formatting for SubTotal was done in the
CellValueNeeded event –where its value was provided-.

• Shrink the form (horizontally)

o Notice the form stops shrinking at ProductId. This column is frozen and will not shrink.

• Click on the Discount column to enter a value. Enter “0.5”

o Notice when you Tab to the next column, the Discount column changes its BackColor to
Red. It is because it has a discount > 0.10

• Close the application

Page 16

Exercise 4– Binding to business objects

Task 1 – Open startup project
• Open Visual Studio 2005

• Select File | Open | Project/Solution menu command

• Enter the File Name

• For VB,

“C:\Microsoft Hands-On-Lab\HOL-CLI03\Source\Exercises\Starter\VB\BuildingMaintenance”

For C#,

“C:\Microsoft Hands-On-Lab\HOL-CLI03\Source\Exercises\Starter\CS\BuildingMaintenance”

• Select “BuildingMaintenance.sln”

• Click Open

Note: The solution has two projects:

BuildingMaintenance is an empty Windows application.

Facilities is a class library with a few business objects. With the exception of the campus class
implementing INotifyPropertyChanged, the classes are very basic. It is just a few properties per class to
describe an object (such as a Building, a Campus, or a Company).

Task 2– Create a business object datasource
• Select Data | Add New DataSource menu command

• Select Object as the datasource type

• Click Next

• Expand the Facilities Namespace (see Figure 1.13)

Figure 1.13 - DataSource Configuration Wizard for business objects

• Select Campus

• Click Next

• Click Finish

Page 17

Task 3 - Create Master/Details from using business object datasource
• Open BuildingMaintenance.Form1 in the forms designer

• Select Data | Show DataSources menu command

• The datasources window appears (see Figure 1.14)

Figure 1.14. DataSources window showing object Datasource

• Click on the Down arrow next to Campus

• Select Details from the popup-menu (see Figure 1.15)

Figure 1.15 Selecting Detailed View for Campus object

• Drag Campus from DataSources Window to Form1

• Notice that a BindingSource and BindingNavigator were added to the form; along with Details
Controls for the Campus object. Exact same behavior than earlier exercises when binding to
databases.

• Drag the Buildings property from the DataSources window to the bottom of Form1

• Notice a DataGridview was created, with one column for each public property in the Building Class.

Page 18

• Form1 should look like Figure 1.16

Figure 1.16. Form1 after two drag & drops from the datasources window

• Double-Click on Form1 to add a Load event handler

• The following code in the handler will bind our form to an instance of a Company’s facilities:

// C#
 this.campusBindingSource.DataSource =
 Facilities.Company.Microsoft ;

‘VB
CampusBindingSource.DataSource = Facilities.Company.Microsoft

• Select Debug | Start Debugging menu command

• BuildingMaintenance launches

• Notice the details and the datagrid are populated. The BindingNavigator works too. You can move
forward and back, and can delete a record.

Note: The new button in the binding navigator is disabled because the Campus class does not have a
default constructor.

• Close the application (or select Debug | Stop Debugging)

Page 19

Task 4 – Update business object
• Add a button to the campusBindingNavigatorToolstrip (see Figure 1.17)

Figure 1.17 – Customizing a BindingNavigator with an extra button

• Set the following properties in the just added toolstripButton1

o (Name) = toolstripButton1

o BackColor = “Desktop”

o DisplayStyle = “Text “

o ForeColor = “ActiveCaptionText”

o Text = “UpdateCampusName”

• Double-Click on toolStripButton1 to add a click handler

Note: In the clickhandler, we will update the name of one of the campuses. The goal is to show that an
update to a business object will be reflected in the User Interface because the UI is databound.

o Enter the following code in toolStripButton1_Click:

// C# :
Facilities.Company.Microsoft[0].Name = "Updated";

‘ VB:
Facilities.Company.Microsoft(0).Name = "Updated"

• Select Debug | Start Debugging menu command to preview the changes

• The app launches

• Click the Update Campus Name button

Page 20

• Notice the user interface immediately changes the name to Updated (Figure 1.18)

Figure 1.18 – A databound business object triggered the UI to update

Note: The Campus class notifies the UI controls that a property has changed via the
INotifyPropertyChanged interface – exposing the PropertyChanged event-.

For any business object that will be wired for a simple (1 to 1) binding, the interface needs to be
implemented.

Page 21

Page 22

Lab Summary
In this lab you performed the following exercises.

• Create a datasource and add it to the Datasources window

• Databinding a DataSource to a form

• Customizing a DataGridView

• Binding to business object

In this lab, you explored some of the new databinding features in windows forms 2.0. You used the
productivity enhancements of the datasources windows to generate master/details for data coming from
both a database and a business object. You accomplished both of these with out having to write any
code.

We also explored a few of the options in the new DataGridView control. The datagridview allows you
to add Unbound columns and provide the value to be displayed via the CellValueNeeded event. It also
allows eventing to format, cell paint, and handle events. You explored these features in this lab.

	Lab 1: Data Features in Windows Forms 2.0
	Lab Objective
	Exercise 1 –Create a datasource and add it to DataSources Wi
	Task 1 – Create Windows Application
	Task 2 – Add a DataSource to your project
	Task 3 – Explore the recently added datasource

	Exercise 2 – Databinding a Datasource to a form
	Task 1 – Create a Master/Details View
	Task 2 – Customize the Detail controls to readonly types

	Exercise 3 – Customizing a DataGridView
	Task 1 – Adding UnBound columns to the view
	Task 2 – Customizing Cell formats
	Task 3 – Populating the Unbound columns
	Task 4 – Handling CellPainting to highlight cells
	Task 5 – Removing unneeded columns & freezing columns
	Task 6 – Preview all the changes

	Exercise 4– Binding to business objects
	Task 1 – Open startup project
	Task 2– Create a business object datasource
	Task 3 - Create Master/Details from using business object da
	Task 4 – Update business object

	Lab Summary

