

Summary

This whitepaper describes how Rapid Addition built their ultra low latency
FIX and FAST message processing software using the Microsoft .NET 3.5
Framework. By following a disciplined design and development, Rapid
Addition was able to meet stringent latency requirements while retaining
the advantages that managed code brings.

Contents

1 Introduction
2 Motivation for Using .NET
4 Garbage Collection
6 Product Development and Test Methodology
6 Working With Microsoft
6 The Visual Studio 2008™ Performance Tools
6 Event Tracing for Windows (ETW)
7 Results
8 Conclusion
8 References

Introduction

Latency matters. And Rapid Addition, the leading supplier of front office
messaging components to the global financial services industry knows this
better than most. Their founder and chairman, Kevin Houstoun, has been
one of the leading innovators in this space since helping bring the FIX
Protocol to Europe in the 1990’s. “Being a few microseconds slower than
their competitors can literally cost our clients millions of pounds, dollars or
yen. It means the difference between a high speed arbitrage trade being
profitable or a waste of time and money; for a hedge fund, it means the
difference between posting an updated price and being hit on a stale price
for a market maker; and for an exchange it means being the venue of
choice for many legs of various trading strategies. For many of our clients
low latency is not an option it is a necessity.”

 June 2009
Building Low Latency Applications for Financial Markets

Rapid Addition leverages Microsoft .NET 3.5
Framework™ to build ultra-low latency FIX and
FAST processing

Applies to: FIX and FAST message processing Low Latency Financial
Application Architecture, Microsoft .NET 3.5 Framework™

Kevin Houstoun
Rapid Addition Limited

Ed Briggs
Microsoft Corporation

Houstoun has lead the FIX Protocol Limited's (FPL) Global Technical Committee (GTC) through the
introduction of a data model behind the collection of protocols the group supports, the introduction
of the FAST messaging compression standard, FAST, and the release of 3 versions of FIX targeting
the exchange to sell side communication. FAST stands for FIX Adapted for Streaming Transport; it
was a response to growing market data volumes and the exchange communities desire to avoid
inventing further costly proprietary protocols. FAST is an open specification that was developed by
FPL with financial support from Archipelago Exchange, the Chicago Mercantile Exchange, the
International Securities Exchange, London Stock Exchange, Microsoft and the Singapore Stock
Exchange.

In 2003 Houstoun left Salomon Brothers, then part of Citigroup, and teamed up with Clive Browning,
to write components based on FPL standards utilizing the recently introduced repository. They had a
vision of using the FPL data model to write better performing and easier to use components.

Conventional wisdom has been developing low latency messaging technology required the use of
unmanaged C++ or assembly language. But RA saw advantages to building this sort of technology in
managed code. Asked about this choice Clive Browning, Rapid Addition's Chief Technology Officer
said, “When you look at the unmanaged C++ solutions, you see that the approach the best of breed
solutions use is to develop their own specialized engine and then generate dedicated handlers for
each pattern that uses its specialized engine. Our approach is actually very similar to this except that
our specialist engine is a sub set of Microsoft’s .Net CLR.” Browning continues, “This gives our
clients certain advantages, we don’t have to update our engine for every hardware change, Microsoft
does that for us; we have the full set of .NET features available for other modes of operation such as
start up, and of course there is no overhead for communicating between the managed and
unmanaged code if our end customers are using .NET for other parts of their project.”

To meet the demanding latency requirements inherent in FIX and FAST message processing, there
are two overriding rules Rapid Addition employs in their designs:

1) Actively manage any resources that are used in the steady state operation of the program.
This is achieved through the use of resource pools. A number of resources are assigned in the
startup phase and then these are recycled throughout the continuous operations phase.

2) Do not cause garbage collection in the continuous operation phase of the system.

From an overall design perspective when designing low latency systems in .NET, Rapid Addition
adopts a number of disciplines:

1) Structure code into three distinct phases; startup, continuous operations and shut down
sections. Code in the start-up is allow to make memory allocation both for use in resource
pools and temporarily to initiate the process but at the end of the start-up mode the garbage
collector is invoked to ensure that any unreferenced memory is released at this point. In the
continuous operations phase no memory allocation is tolerated and in the shutdown phase
the garbage collector is allowed to become active again.

Motivation for Using .NET

Building Low Latency Applications for Financial Markets 2

Figure 1 below illustrates this, the program is started around 12:27:26 and we see some GC activity
related to start-up, it runs in continuous mode sending 40,000 messages per second until 12:28:30
when it is shut down, as part of the shut down the resource pools are released and we see the
Garbage Collector activity associated with cleaning up these resources. The important thing to note
is that there is no Garbage Collector activity in the continuous operation phase. In live client systems
this Garbage Collector free phase can be 10's or 100's of hours.

2) Tight coding standards and guidelines ensure that once in the continuous operating mode
garbage is not created. Apart from the obvious approaches such as avoiding manipulating
immutable objects, principle the .Net string data type, it also involves avoiding parts of the
.Net runtime that Rapid Addition know create garbage.

 Building Low Latency Applications for Financial Markets 3

Garbage Collection is a charming term referring to the mechanism providing automatic memory
reclamation employed by the Microsoft .NET Common Language Runtime™ (CLR). The CLR uses a
generational garbage collector which divides the memory heap into partitions and segregates
memory objects by age, or generation. This optimization is based on the following observations:

• Most memory allocations are short lived, and can be reclaimed quickly.
• Some allocations will last a long time. An heuristic to determine if an allocation will be long lived

is the allocation's current age - if it is old, it will probably become older, and if necessary can be
'promoted' to a different generation.

• Reclaiming part of the heap is faster than collection the entire heap.

By partitioning the heap into generations, the time and computational effort required to perform
garbage collection can be substantially reduced. The CLR also provides several different GC
algorithms referred to as workstation and server which can be selected to best suit performance
requirements. In the following sections we discuss GC overhead using workstations GC. Because a
full discussion of GC is beyond the scope of this document, interested readers may consult Microsoft
URL below for further information.

Although GC is performed quite rapidly, it does take time to perform, and thus garbage collection in
your continuous operating mode can introduce both undesirable latency and variation in latency in
those applications which are highly sensitive to delay. As an illustration, if you are processing
100,000 messages per second and each message uses a small temporary 2 character string,
around 8 bytes (this a function of string encoding and the implementation of the string object) is
allocated for each message. Thus you are creating almost 1MB of garbage per second. For a system
which may need to deliver constant performance over a 16 hour period this means that you will have
to clean up 16 hours x 60 minutes x 60 seconds x 1MB of memory approximately 56 GB of memory.
The best you can expect from the garbage collector is that it will clean this up entirely in either
Generation 0 or 1 collections and cause jitter, the worst is that it will cause a Generation 2 garbage
collection with the associated larger latency spike.

Garbage Collection

Building Low Latency Applications for Financial Markets 4

The above graph illustrates the effect of Garbage collection on messaging latency. You can see that
the GC2 collections (the 4 blue peeks at the bottom) correlate with the 4 highest peaks. We can also
see a fair amount of jitter (probably due to lots of GC0's). By performing our own storage
management using resource pools, RA avoid the latency arising from these GCs.

Some additional techniques RA use to reduce the quantity of garbage that we collect include:

1) Avoiding immutable reference data types, these effectively are read only within .NET and once
created copies are produced for each modification and the original is discarded.

2) Avoid .NET operations which create temporary objects, for example boxing objects; this creates a
copy of the value type as an object on the heap; this then needs to be garbage collected once it
is de-referenced.

3) Some .NET' Framework functions create garbage, and these function calls need to be avoided
during steady-state operation. For instance when you call

System.Globalization.DaylightTime DayLightTime =
System.TimeZone.CurrentTimeZone.GetDaylightChanges(2010);

the function creates more garbage than you would expect. The CIL for this operation shows why - the
first few lines contain the following

 IL_004d: ldarg.1
 IL_004e: box System.Int32
 IL_0053: stloc.0

It is the boxing operation at IL_004e that creates the unexpected garbage. Consequently, we do not
use this call. RA has a list of similar calls that form a part of their coding standards.

 Building Low Latency Applications for Financial Markets 5

RA has a slightly unusual approach to developing software, the development time for a component
has two phases, typically equal in duration, first functional completeness second performance
tuning, unless this is planned into the life cycle it does not happen effectively.

A lot of this design expertise is hard won knowledge teased out of years of constant refinement of
these systems and in that long hard battle a number of loyal allies deserve special mention.

Working closely with Microsoft through our partner manager and their specialist financial services
team has meant that we have always had the right resources focused on any problem in a quick and
responsive fashion. Microsoft also offers assistance to developers in a variety of other ways, and a
visit to Microsoft websites reveal a wide variety of technical information and programs intended to
support developers and architects.

Over the years Microsoft has consistently improved the code profiling and instrumentation tools in
Microsoft Visual Studio 2008™. The current performance tools are invaluable to quickly identifying
any functions allocating objects and tracking the life of those objects. This tool has become an
essential part of our development life cycle and all of our latency sensitive products spend a good
percentage of their development time under its watchful eye.

Microsoft Event Tracing for Windows (ETW) is an essential useful tool for measuring latency as well
as a very wide range of performance characteristics. First introduced in Windows Server® 2000,
ETW consists of a extremely low overhead tracing mechanism that instruments the Microsoft
Windows® kernel, network stack, .NET® Framework, and applications such as Microsoft SQL
Server.® It can also be used to instrument other applications by using standard Win32 API calls or
corresponding .NET 3.5 methods. ETW Traces can be synchronized between different servers
providing an extremely high resolution end-to-end latency and performance profile.

Product Development and Test Methodology

Working With Microsoft

The Visual Studio 2008™ Performance Tools

Event Tracing for Windows (ETW)

Building Low Latency Applications for Financial Markets 6

When used in this way, ETW can be used to trace a message or transaction through the system,
providing not just averages, but full information on isolated latency anomalies. It is possible to see,
for example when a UDP datagram arrives, which it is read by the application thread, when the
thread encounters a lock contention, page fault, or context switch, .NET CLR GC, JIT, or other
application specific events of interest.

In addition, Microsoft provides ETW analysis tools to permit rapid evaluation of ETW Performance
information as part of the Windows Performance Analysis Tools, and these events can also be used
by Microsoft Visual Studio 2010.

Sending billions of messages over an extended period of days provides an important perspective on
the performance of our systems. It's very important to examine the performance of these systems
over extended periods both to avoid sampling errors, and to insure that long running systems will
exhibit the desired performance characteristics. For instance, if your memory allocation pattern is
such that you trigger a garbage collection every 120 seconds it is possible to create a great
benchmark for a 30 second window of operation but your numbers of a period of several hours tell a
very different story.

The table below shows the result of a 5345 minute test run (almost 4 days) in which almost 4 billion
messages were processed. The results show a mean processing time of 9.65 microseconds with a
standard deviation 3.85 (send) and 9.8 microseconds with a standard deviation of 1.56. This
represents very little fluctuation about the mean especially given the extended test duration in
addition to the very low processing latency.

Item Send Total Receive Total
Message count 3,855,299,151 3,467,953,771
Run time (minutes) 5345 5345
Min (us) 6 8
Mean (us) 9.53 9.83
Std (us) 3.85 1.56
Median (us) 9.49 9.66
95th Percentile (us) 11.49 11.38
99th Percentile (us) 16.04 13.34
99.9th Percentile (us) 32.43 30.26
99.99th Percentile (us) 48.20 45.11
99.999th Percentile (us) 67.06 61.73

Results

Building Low Latency Applications for Financial Markets 7

These results show it is indeed possible to write low latency code in managed languages but it
requires care and an understanding of the underlying runtime and its operation. The results
achieved in managed code can be just as good as those achieved with unmanaged but without the
additional risks and associated costs of unmanaged code.

Rapid Addition brings best-of-breed performance and latency FIX processing to a broad range of
financial services industry applications, and by leveraging Microsoft .NET Framework™ and the
Microsoft Windows family of operating systems , also offers unbeatable cost-of-ownership,
manageability, and flexibility.

References

Rapid Addition website: http://www.rapidaddition.com

Microsoft .NET website: http://www.microsoft.com/net

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of
the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a

commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This White Paper is for informational purposes only.

MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means

(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this

document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2009 Microsoft Corporation. All rights reserved.

Windows, Windows Server 200, SQL Server, Windows Server 2008, .NET 3.5 Framework, .NET CLR, Visual Studio 2008 and
Visual Studio 2010 are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other

countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Conclusion

Building Low Latency Applications for Financial Markets 8

